Предупреждаем: сейчас нам придется окунуться в очень элегантную, но достаточно запутанную часть рассуждений. Мы постараемся придерживаться обещания не использовать ничего сложнее теоремы Пифагора, но может так получиться, что вам понадобится прочитать этот текст не один раз. Он того стоит, потому что, внимательно следя за ним, вы сможете испытать чувство, которое биолог Эдвард Уилсон[22]
описал как ионическое очарование. Этот термин восходит к работе Фалеса Милетского[23], названного Аристотелем два столетия спустя основоположником естествознания в Ионии в VI веке до нашей эры. Данный поэтический термин отображает убежденность в том, что вся сложность мира объясняется посредством небольшого количества простых законов природы, поскольку природа по своей сути упорядочена и бесхитростна (вспомните эссе Вигнера). Работа ученого – отбрасывать сложности, которые нас окружают, и раскрывать лежащую в их основе простоту. Когда этот процесс приносит желаемые плоды, мы испытываем то самое ионическое очарование. Представьте себе на мгновение кружево снежинки на ладони своей руки. Эта элегантная красивая структура демонстрирует зубчатую кристаллическую симметрию. Не бывает двух одинаковых снежинок, и на первый взгляд этот хаос не может иметь однозначного объяснения. Но наука учит нас, что за очевидной сложностью снежинки скрывается лежащая в ее основе изысканная простота: каждая снежинка представляет собой конфигурацию миллиардов молекул воды H2O. Больше в снежинке ничего нет, а ее поразительно сложная структура образуется, когда молекулы H2O собираются вместе в атмосфере планеты в холодную зимнюю ночь.Для того чтобы решить вопрос с плюсом или минусом, следует обратить внимание на принцип причинности. Давайте предположим, что уравнение Пифагора применимо и к расстояниям в пространстве-времени, то есть что s
² = (ct)² + x². Теперь еще раз вернемся к нашим событиям – подъему в семь утра и завершению завтрака в восемь – и сделаем нечто такое, от чего у вас побегут мурашки по коже, когда вы вспомните, как сидели на уроках математики в школе и смотрели через окно на футбольное поле, нетронутое и зовущее в солнечный весенний день, – назовем момент пробуждения O, а завершение завтрака – A. Мы делаем это исключительно из соображений краткости, чтобы не описывать каждый раз подробно эти события.Мы знаем, что пространственное расстояние между O
и A равно x = 10 метров, а временное – t = 1 час, если x и t измеряю я. Мы еще не решили, чему равно c, но когда будем знать эту величину, то сможем вычислить и расстояние s в пространстве-времени между событиями O и A. Наша гипотеза заключается в том, что, если кто-то пролетит мимо со скоростью, близкой к скорости света, и выполнит те же измерения, расстояние s останется тем же. Иными словами, x и t для этого наблюдателя могут быть (и будут) другими, но они изменятся таким образом, что значение s останется прежним. Рискуя показаться слишком настойчивыми в подчеркивании важности этой мысли, хотим вам напомнить, что наша цель – всегда строить законы физики с использованием инвариантных объектов в пространстве-времени. Расстояние s – именно такой объект. Если это звучит слишком абстрактно, можем повторить сказанное с меньшим количеством математических терминов: правила природы должны выражать соотношения между реальными вещами, а эти вещи находятся в пространстве-времени. Вещь в пространстве-времени сродни объекту, расположенному в комнате. Пространство-время (или комната) представляет собой арену, на которой живет эта вещь. Природа реальных вещей не зависит от точки зрения и мнения наблюдателя, и в этом смысле мы говорим, что она инвариантна. Трехмерным примером чего-то, что не является инвариантной величиной, может служить мерцающая тень объекта в комнате, освещаемой пламенем из камина. Очевидно, что тень меняется в зависимости от того, как горит огонь и где находится камин, но у нас нет никаких сомнений, что за тень отвечает реальный, неизменный объект. Используя пространство-время, мы хотим вывести физику из тени и отследить соотношения между реальными объектами.
Рис. 5