Обратите внимание, что функции f и g описывают перестановку разновидностей брака так, что все возможные разновидности оказываются применимы для потомков обоих полов ровно один раз. В противном случае одна из разновидностей брака в следующем поколении исчезла бы, и было бы нарушено первое условие. Помните, что я рассказывал вам о симметрической группе Sn
, господин Леви-Стросс? Функции f и g — это перестановки элементов М1, M2, M3 и M4. Сочетая их несколько раз, мы можем достичь любой, даже самой дальней ветви генеалогического древа!Независимо от сложности правил, описывающих допустимые браки, мы всегда сможем описать их на языке алгебры — достаточно лишь запастись терпением.
ЛЕВИ-СТРОСС: Посмотрим, господин Вейль. Попробуйте доказать, что женщины принадлежат к тому же клану, что и их бабушки по отцовской линии.
ВЕЙЛЬ: Я думал, вы предложите мне задачу посложнее! Допустим, что бабушка и дедушка вступили в брак по правилу Mi
. Тогда их сыновья должны последовать правилу f(Mi), а женщины, рожденные в этом брачном союзе, вступят в брак по правилу g(f(Mi)). Следовательно, чтобы определить разновидность брака внучки, сначала нужно применить функцию f, затем — функцию g. Теперь ваш вопрос звучит так: совпадают ли g(f(Mi)) и Mi?Иными словами, является ли композиция f и g тождественным преобразованием? Чтобы показать, что это не так, достаточно произвести несложные расчеты: поскольку f(M1
) равно М3 a g(M3) равно M4, получим, что g(f(M1)) = M4, а не М1 как мы хотели. Следовательно, если бабушка68
принадлежит клану В, то внучка принадлежит к клану А. Однако бабушка по отцовской линии и ее внучка действительно будут принадлежать к одному клану. Убедитесь в этом!
ЛЕВИ-СТРОСС: Господин Вейль, я впечатлен! Именно такие методы требовались мне в 40-е годы при изучении запрета инцеста — проблемы, над которой до меня работал социолог Эмиль Дюркгейм. Он одним из первых указал, что запрет инцестов есть проявление более общего феномена, распространенного практически повсеместно — экзогамии. Как только мне что-то запрещают в кругу близких родственников, я вынужден покинуть клан, чтобы преодолеть запрет. Таким образом, речь идет не о моральных, а о практических соображениях. Многие опрошенные объясняли, что если женятся на своей сестре, то у них не будет зятя. «С кем я тогда буду ходить на охоту? С кем я буду отдыхать?» — говорили они. Моя точка зрения в некотором роде отличалась от той, которой придерживался Дюркгейм. Мне было интересно понять переход от природы, описываемой всеобщими законами, к культуре, где законы в разных обществах отличались. Вскоре я понял, что запрет инцеста представляет собой некое промежуточное состояние, потерянное звено цепи. Очевидно, что это правило применяется по-разному: в некоторых обществах, чрезвычайно строгих в этом отношении, смертью караются связи, которые мы бы никогда не назвали инцестом. В таком обществе я сам был бы рожден в запретном браке, так как мои родители были пятиюродными братом и сестрой. Другие общества, напротив, настолько либеральны, что в них мужчина может жениться на младшей сестре, хотя вступать в брак со старшей сестрой запрещается. Неизменно одно: всегда существует правило, запрещающее вступать в брак с кем угодно. Согласно моей гипотезе, запрет инцеста есть признак перехода от природы к культуре: в разных обществах это правило отличается, но в то же время оно весьма схоже со всеобщими законами природы.
ВЕЙЛЬ: Если я правильно помню, брак между родными братом и сестрой всегда был запрещен, но в некоторых племенах, которые вы изучали, мужчина мог вступать в брак с дочерью брата своей матери. Посмотрим, как можно записать это правило с помощью перестановок f и g. Не будем сразу же рассматривать мужчину, вступающего в брак, и вернемся на два поколения назад. Рассмотрим брак, заключенный по одному из правил Mi
. Дочь, рожденная в этом браке, должна будет последовать правилу g(Mi), сын — f(Мi).Это и будут мать и ее брат, о которых говорится в условии задачи. Следовательно, мужчина вступит в брак по правилу f(g(Mi
)), а дочь брата его матери — по правилу g(f(Mi)). Чтобы оба они могли пожениться, эти правила должны совпадать: f(g(Mi)) = g(f(Mi)). Иными словами,69
вне зависимости от исходного правила, если мы применим сначала функцию g, а затем — функцию f, то результат будет таким же, как если мы применим сначала функцию f, затем — функцию g. Как я уже объяснял в нашей последней беседе, композиция f и g является коммутативной. Это означает, что подгруппа Sn, которую порождают эти функции (то есть множество элементов, получаемых последовательным применением f и g), является абелевой. Абелевы группы с двумя порождающими элементами очень просты. Сейчас я объясню, почему это так, но вначале потребуется ввести одно новое понятие.