Читаем Пока алгебра не разлучит нас полностью

Обратите внимание, что функции f и g описывают перестановку разновидностей брака так, что все возможные разновидности оказываются применимы для потомков обоих полов ровно один раз. В противном случае одна из разновидностей брака в следующем поколении исчезла бы, и было бы нарушено первое условие. Помните, что я рассказывал вам о симметрической группе Sn, господин Леви-Стросс? Функции f и g — это перестановки элементов М1, M2, M3 и M4. Сочетая их несколько раз, мы можем достичь любой, даже самой дальней ветви генеалогического древа!

Независимо от сложности правил, описывающих допустимые браки, мы всегда сможем описать их на языке алгебры — достаточно лишь запастись терпением.

ЛЕВИ-СТРОСС: Посмотрим, господин Вейль. Попробуйте доказать, что женщины принадлежат к тому же клану, что и их бабушки по отцовской линии.

ВЕЙЛЬ: Я думал, вы предложите мне задачу посложнее! Допустим, что бабушка и дедушка вступили в брак по правилу Mi. Тогда их сыновья должны последовать правилу f(Mi), а женщины, рожденные в этом брачном союзе, вступят в брак по правилу g(f(Mi)). Следовательно, чтобы определить разновидность брака внучки, сначала нужно применить функцию f, затем — функцию g. Теперь ваш вопрос звучит так: совпадают ли g(f(Mi)) и Mi?

Иными словами, является ли композиция f и g тождественным преобразованием? Чтобы показать, что это не так, достаточно произвести несложные расчеты: поскольку f(M1) равно М3 a g(M3) равно M4, получим, что g(f(M1)) = M4, а не М1 как мы хотели. Следовательно, если бабушка

68

принадлежит клану В, то внучка принадлежит к клану А. Однако бабушка по отцовской линии и ее внучка действительно будут принадлежать к одному клану. Убедитесь в этом!

ЛЕВИ-СТРОСС: Господин Вейль, я впечатлен! Именно такие методы требовались мне в 40-е годы при изучении запрета инцеста — проблемы, над которой до меня работал социолог Эмиль Дюркгейм. Он одним из первых указал, что запрет инцестов есть проявление более общего феномена, распространенного практически повсеместно — экзогамии. Как только мне что-то запрещают в кругу близких родственников, я вынужден покинуть клан, чтобы преодолеть запрет. Таким образом, речь идет не о моральных, а о практических соображениях. Многие опрошенные объясняли, что если женятся на своей сестре, то у них не будет зятя. «С кем я тогда буду ходить на охоту? С кем я буду отдыхать?» — говорили они. Моя точка зрения в некотором роде отличалась от той, которой придерживался Дюркгейм. Мне было интересно понять переход от природы, описываемой всеобщими законами, к культуре, где законы в разных обществах отличались. Вскоре я понял, что запрет инцеста представляет собой некое промежуточное состояние, потерянное звено цепи. Очевидно, что это правило применяется по-разному: в некоторых обществах, чрезвычайно строгих в этом отношении, смертью караются связи, которые мы бы никогда не назвали инцестом. В таком обществе я сам был бы рожден в запретном браке, так как мои родители были пятиюродными братом и сестрой. Другие общества, напротив, настолько либеральны, что в них мужчина может жениться на младшей сестре, хотя вступать в брак со старшей сестрой запрещается. Неизменно одно: всегда существует правило, запрещающее вступать в брак с кем угодно. Согласно моей гипотезе, запрет инцеста есть признак перехода от природы к культуре: в разных обществах это правило отличается, но в то же время оно весьма схоже со всеобщими законами природы.

ВЕЙЛЬ: Если я правильно помню, брак между родными братом и сестрой всегда был запрещен, но в некоторых племенах, которые вы изучали, мужчина мог вступать в брак с дочерью брата своей матери. Посмотрим, как можно записать это правило с помощью перестановок f и g. Не будем сразу же рассматривать мужчину, вступающего в брак, и вернемся на два поколения назад. Рассмотрим брак, заключенный по одному из правил Mi. Дочь, рожденная в этом браке, должна будет последовать правилу g(Mi), сын — f(Мi).

Это и будут мать и ее брат, о которых говорится в условии задачи. Следовательно, мужчина вступит в брак по правилу f(g(Mi)), а дочь брата его матери — по правилу g(f(Mi)). Чтобы оба они могли пожениться, эти правила должны совпадать: f(g(Mi)) = g(f(Mi)). Иными словами,

69

вне зависимости от исходного правила, если мы применим сначала функцию g, а затем — функцию f, то результат будет таким же, как если мы применим сначала функцию f, затем — функцию g. Как я уже объяснял в нашей последней беседе, композиция f и g является коммутативной. Это означает, что подгруппа Sn, которую порождают эти функции (то есть множество элементов, получаемых последовательным применением f и g), является абелевой. Абелевы группы с двумя порождающими элементами очень просты. Сейчас я объясню, почему это так, но вначале потребуется ввести одно новое понятие.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги