Введение «доказательств» сыграло роль колеса во всемирной истории человеческой мысли. Философы научились контролировать рассуждения. В качестве расплаты за недоверие к очевидному пришлось доказывать всё, даже то, что «две половины круга, разделённые диаметром, равны между собой».
Вспомним, наконец, о Евклиде [Рис. 6], жившем через три столетия после Пифагора. В отличие от богатейшей пифагорейской мифологии, рассказов о Евклиде мало. Если быть точным, их всего два. Первый принадлежит греческому византийскому философу Проклу (410–485), жившему через 700 лет после Евклида. В своих «Комментариях на первую книгу Евклида» Прокл приводит анекдот о царе Птолемее, который спросил Евклида: «Нет ли в геометрии более краткого пути, чем тот, который изложен в Элементах? – на что Евклид якобы ответил, что «в геометрии не существует царской дороги».
Второй рассказ следующий. Некто обучался геометрии в школе Евклида. Выучив первую теорему, ученик спросил, какая польза от изучения такого рода вещей. Евклид позвал раба и приказал выдать ученику монету, дабы тот не говорил, что познал теорему без пользы, а потом ученика прогнал. Обе эти истории практически без изменений рассказывают и про других философов.
Непосредственные свидетельства о жизни многих великих деятелей древности редки, малодостоверны и часто разбросаны по различным источникам. Но в случае Евклида их просто нет. Всё, что можно утверждать, вмещается в одну фразу: знаменитые «Начала» созданы Евклидом в Александрии Египетской приблизительно в III веке до н. э.
Однако встретить имя Евклида при изучении истории всё равно, что встретить знакомого в чужой стране. Его имя известно с уроков математики. В школе до сих пор изучают три признака равенства треугольников и другие геометрические премудрости «по Евклиду». Если учение Пифагора окутано облаком легенд, то «Начала» Евклида покоряют точностью и полным отсутствием околонаучных рассуждений. В математике, науке умственной, одни положения доказывают, используя другие. Чтобы избежать замкнутого круга, некоторые положения необходимо принять за аксиомы. С именем Евклида связывают создание аксиоматического метода.
Часто говорят, что за аксиомы берутся самоочевидные истины. Нельзя сказать, чтобы уж очень очевидные. В геометрии пятый постулат Евклида о параллельности прямых пробовали уничтожить, то есть вывести из остальных аксиом в течение двух тысячелетий, пока, наконец, не поняли, что доказать его нельзя, но можно либо включать, либо не включать в систему аксиом, и это приводит к разным геометриям.
Что взять за первоосновы – серьёзный вопрос не только в математике. Если взять «по ходу дела» какой-либо набор постулатов и дальше рассуждать логически, то можно прийти к чему угодно. Приняв в качестве аксиом несколько нереальных предположений и считая, что они выполняются в реальном мире, можно изучать следствия, ценность которых в значительной мере зависит от качества первоначальных предположений. По такому принципу строятся научно-фантастические романы, и не только они.
Аристотель, известный своей въедливостью, приступая к одному из своих трактатов («О душе»), писал, что прежде всего необходимо разобраться, с чего начинать. «Надо подумать, из чего исходить: ведь для разного начала различны, например, они разные для чисел и плоскостей». Как видим, Аристотель знал, что аксиоматика для арифметики и геометрии разная. Поиск единой аксиоматики для всей человеческой деятельности является, если угодно, одной из задач философии.
Аналогом аксиом для описания структуры мира для греков служили совершенные геометрические объекты. Вслед за Платоном и другими греческими философами Евклид рассматривает выпуклые многогранники, построенные из правильных многоугольников. В греческой теории они играют роль своеобразных атомов. Размеры рёбер таких атомов считались минимально возможными, а значит, равными. Евклид привёл математическое доказательство, что совершенных тел может быть только пять.
Есть у Евклида и две идеальные линии – прямая и окружность. С их помощью греческие математики пытались выполнить все возможные геометрические построения. В современных учебниках такой метод имеет более приземлённое название – геометрическое построение с помощью циркуля и линейки.
У Евклида приведены и формулировки нерешённых проблем: удвоение куба, трисекция угла, квадратура круга, так сказать, на будущее, чтобы математикам было чем заниматься до середины XIX века. Именно тогда окончательно разобрались с нерешёнными задачами Евклида.
Было время, когда вся эта богатейшая информация исчезла. Европа забыла греческий язык раньше, чем затих водоворот варварских нашествий. Позднее завоёванные арабами территории окончательно отрезали Европу от старых культурных центров.