С развитием более безопасной и более эффективной системы доставки с помощью вирусов генная терапия показала многообещающие результаты при бета-талассемии, некоторых формах наследственной слепоты, гемофилии (нарушения свертываемости крови) и так далее. Не за горами и дальнейшие успехи: мы расширяем наш инструментарий для редактирования генов. Ультрасовременный метод редактирования генов CRISPR/Cas9 вызвал столько ажиотажа, что стал почти расхожим термином. Технология CRISPR/Cas9, использующая компоненты бактериальной иммунной системы, действует как ножницы для ДНК – разрезание на уровне нуклеотидов убирает плохие гены или вставляет новые.
В 2015 году Цзюньцзю Хуан и его группа из Университета Сунь Ятсена в Китае создали с помощью технологии CRISPR/Cas9 первый генетически модифицированный человеческий эмбрион, чтобы исправить плохую копию гена бета-глобина, который вызывает бета-талассемию. (Для исследования использовались нежизнеспособные эмбрионы.) Как и CRISPR/Cas9, нуклеазы с цинковыми пальцами (ZFN) также могут вырезать определенные участки ДНК для вставки новых генов. Сейчас интенсивно изучается еще один метод генной терапии, включающий генную инженерию иммунной системы человека, чтобы она могла распознавать такие виды рака, как лимфома, и бороться с ними.
Один из иммунотерапевтических подходов – терапия химерного рецептора антигена (CAR) – состоит в том, что у пациента берут клетки под названием Т-лимфоциты и редактируют их на генетическом уровне, чтобы создать специальный рецептор, используемый для распознания злокачественных клеток пациента. Затем эти измененные, перепрограммированные Т-лимфоциты вводят обратно в организм человека, где они действуют как наемные убийцы, выслеживая и убивая раковые клетки.
Появление инструментов для редактирования генов означает, что мы больше не просто читатели ДНК – мы уже писатели (хотя все еще продолжаем учить язык). Но по той же самой причине, по которой мы не просим дошкольников редактировать манускрипты, большинство ученых выступают за запрет модифицирования генов в жизнеспособных эмбрионах или половых клетках: такие изменения будут передаваться по наследству и могут оказать непредсказуемые неблагоприятные эффекты на человека, а потенциально – и на его дальних потомков. Кроме того, это открывает этический ящик Пандоры: кто-то непременно возжелает редактировать гены не для медицинских целей, а для создания дизайнерских младенцев.
Как мы можем менять экспрессию геновМы обсуждали различные поведенческие проблемы, которые возникают не вследствие изменений в последовательности генов, а из-за степени экспрессии. На уровень экспрессии может влиять окружающая среда посредством эпигенетических механизмов, например метилирования ДНК или химического изменения гистоновых белков, взаимодействующих с генами. По мере того как ученые открывают ферменты, которые записывают, читают и стирают такие эпигенетические изменения, становится ясно, что мы можем воздействовать на это с помощью определенных препаратов. Базовое рассуждение таково. Некий ген Х отключается из-за метилирования ДНК. Когда ген Х отключен, происходят плохие вещи. Так давайте снова включим ген Х с помощью какого-нибудь препарата, способного предотвратить метилирование ДНК.
Хотя эпигенетика – новая отрасль науки, Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA) уже одобрило несколько эпигенетических препаратов для лечения различных заболеваний. Первым лекарством в 2004 году стал азацитидин, который лечит миелодиспластический синдром (МДС) – редкое заболевание костного мозга (внимание к нему привлекла, сообщив о своем диагнозе, ведущая американского утреннего шоу Good Morning America Робин Робертс). Азацитидин ингибирует фермент метилирования ДНК, и в результате ослабление метилирования повышает экспрессию генов. Хотя нельзя выбрать, какие именно гены будут подстегнуты, затрагивается целое подмножество генов, необходимых для созревания клеток крови; в итоге число клеток крови увеличивается и симптомы болезни смягчаются.
В 2006 году FDA одобрило второй класс эпигенетических препаратов, которые называются ингибиторами деацетилазы гистонов (HDAC). Эти лекарства используются для лечения лимфомы или миеломной болезни, однако клинические испытания проходят новые производные, предназначенные для сóлидных[190] опухолей. Напомним, что гены, связанные с ацетилированными гистонами, активно экспрессируются. Когда ферменты HDAC убирают ацетильные группы, экспрессия генов ослабляется или отключается. Ингибиторы HDAC останавливают работу ферментов, убирающих ацетильные группы от гистонов; в результате ген остается в активном состоянии.