Читаем Предположения и опровержения. Рост научного знания полностью

Мы не знаем даты доказательства иррациональности квадратного корня из двух или даты, когда это открытие получило известность. Хотя и существует традиция приписывать его Пифагору (шестой век до н.э.) и некоторые авторы35 называют его «теоремой Пифагора», трудно сомневаться в том, что это открытие не было сделано и, во всяком случае, не было известно до 450 г. до н.э., скорее даже до 420 г. Неясно, было ли оно известно Демокриту. Теперь я склонен считать, что он не знал об этом открытии и что названия двух последних книг Демокрита «Peri alagцn grammцn kai naston» следует переводить как «О нелогичных отрезках и полных телах (атомах)»36 и что эти две книги не содержали каких-либо ссылок на открытие иррациональности37.

Мое убеждение в том, что Демокрит не осознавал проблемы иррациональности, опирается на тот факт, что нет никаких следов, указывающих на то, что он хотел защитить свою теорию от удара, который наносило ей это открытие. Однако этот удар оказался фатальным как для атомизма, так и для пифагорейства. Обе теории исходили из учения о том, что всякое измерение в конечном счете сводится к подсчету естественных единиц, так что каждое измерение должно выражаться числом. Следовательно, расстояние между любыми атомными точками должно состоять из определенного числа атомных расстояний; таким образом, все отрезки должны быть соизмеримы. Однако это оказывается невозможным даже для простого случая расстояний между углами квадрата вследствие несоизмеримости его диагонали d со стороной а.

142

Английский термин «несоизмеримый» несколько неудачен. В нем подразумевается несуществование соотношения натуральных чисел, например, можно доказать для квадрата со стороной, равной единице, что не существует таких двух натуральных чисел пит, отношение которых п/т равно диагонали этого квадрата. Таким образом, «несоизмеримость» не означает несравнимости с помощью геометрических методов или измерений, а только несравнимость на основе арифметических методов счета или на основании натуральных чисел, включая пифагорейский метод сравнения отношений натуральных чисел и, конечно, подсчет единиц длины (или «меры»).

Возвратимся ненадолго к характеристике этого метода натуральных чисел и их соотношений. Превознесение Числа Пифагором оказало плодотворное влияние на развитие научных идей. Это часто, хотя и несколько неопределенно, выражают утверждением о том, что пифагорейцы стимулировали развитие количественного научного измерения. Я же настаиваю на том, что для пифагорейцев все это было скорее счетом, чем измерением. Это был счет чисел, невидимых сущностей, или «природ», которые были числами мельчайших точек. Они знали, что эти мельчайшие точки нельзя сосчитать непосредственно, ибо они невидимы, и что реально мы не считаем Числа или Естественные единицы, а измеряем, т.е. считаем произвольные видимые единицы. Однако измерения они интерпретировали как косвенное раскрытие истинных соотношений Естественных единиц или натуральных чисел.

Метод доказательства Евклидом так называемой «теоремы Пифагора» (Евклид, 1, 47), согласно которому если а есть сторона прямоугольного треугольника, лежащая против прямого угла, образованного сторонами b и с, то

(1) a2 = b2 + c2,

был чужд духу пифагорейской математики. Ныне считается, что эта теорема была известна уже вавилонянам и доказывалась ими геометрически. Однако ни Пифагор, ни Платон не могли знать геометрического доказательства Евклида (который использовал разные треугольники с общим основанием и высо-

143

той). Проблема, которую они решали, была арифметической задачей нахождения общего решения для сторон прямоугольных треугольников. Если равенство (1) известно, то эта задача может быть легко решена посредством следующей формулы (тип — натуральные числа и т > п)\

(2) а — т2 + п2; b = 2тп; с = т2п2.

Однако формула (2) была, по-видимому, неизвестна как Пифагору, так и Платону. Согласно традиции38, Пифагор предложил следующую формулу (полученную из (2) посредством подстановки т = п + 1):

(3) а = 2п (п + 1); b = 2« (п +1); с = 2п + 1.

Ее можно истолковать как гномон квадратных чисел, хотя эта формула является менее общей, нежели формула (2), ибо она не будет верной, например, для 17:8:15. Платону, который улучшил39 формулу Пифагора (3), приписывают другую формулу, которая все-таки еще не равнозначна общему решению (2).

Для иллюстрации разницы между пифагорейским, или арифметическим, методом и геометрическим методом следует упомянуть доказательство Платоном того факта, что квадрат диагонали единичного квадрата (т.е. квадрата со стороной, равной 1) равен удвоенной единице в квадрате. Доказательство заключается в изображении квадрата с диагональю:

а затем в расширении этого изображения следующим образом:

Перейти на страницу:

Похожие книги

Теория нравственных чувств
Теория нравственных чувств

Смит утверждает, что причина устремленности людей к богатству, причина честолюбия состоит не в том, что люди таким образом пытаются достичь материального благополучия, а в том, чтобы отличиться, обратить на себя внимание, вызвать одобрение, похвалу, сочувствие или получить сопровождающие их выводы. Основной целью человека, по мнению Смита. является тщеславие, а не благосостояние или удовольствие.Богатство выдвигает человека на первый план, превращая в центр всеобщего внимания. Бедность означает безвестность и забвение. Люди сопереживают радостям государей и богачей, считая, что их жизнь есть совершеннейшее счастье. Существование таких людей является необходимостью, так как они являются воплощение идеалов обычных людей. Отсюда происходит сопереживание и сочувствие ко всем их радостям и заботам

Адам Смит

Экономика / Философия / Образование и наука