На первом шаге сквален-монооксигеназа катализирует присоединение кислорода к концевой двойной связи сквалена, образуя сквален-2,3-эпоксид. Для этой реакции требуется молекулярный кислород, хотя и в очень малой концентрации. Затем ланостерол-синтаза катализирует восстановление эпоксида, при этом неустойчивый продукт восстановления – радикал сквалена – перестраивает двойные связи в замкнутые кольца, образуя ланостерол (рис. 18.6). Ланостерол дает начало всем другим стероидам путем модификации боковых групп.
Из-за крайней важности стеролов для эукариотической клетки происхождение ферментов их биосинтеза внимательно исследовалось. Сходные ферменты, синтезирующие те же стеролы, были обнаружены у некоторых гамма-протеобактерий, например
Большая часть эукариотических генов бактериального происхождения, не принадлежавших предкам митохондрий и пластид, кодирует защитные, рецепторные, транспортные, сигнальные и регуляторные белки. Сюда относятся, например, белки теплового шока Hsp90, белки устойчивости к тяжелым металлам TerC и Ttg2 и др. Что интересно, белки, которые у эукариот обеспечивают взаимодействие между компонентами клетки, у бактерий нужны для связей между разными клеткам в сообществе. Например, Tim44 эукариот необходим для транспорта белков через внутреннюю мембрану митохондрий из цитоплазмы, а его бактериальные родственники экспортируют белки из клеток во внешнюю среду. Это свидетельствует о том, что при возникновении эукариотической клетки под одной мембраной оказались уже отработанные системы связи клеток в сообществе.
В целом можно сказать, что те белки эукариот, которые получены от других бактерий (не предков митохондрий и пластид), не имеют какого-то одного источника. Скорее, они были получены от множества разных бактерий путем горизонтального переноса генов. Гипотезы, в которых до симбиоза с протеобактериями было слияние клеток какой-то другой бактерии с археей, не поддерживаются этими геномными данными.
Архейный предок эукариот
Хотя участие какой-то археи в происхождении эукариот давно стало очевидно, выделить конкретную группу архей, к которой мог относиться предок эукариот, оказалось не так просто. Многие компоненты эукариотной клетки были найдены у отдельных видов архей, но это были разные виды, относящиеся к разным крупным группам архей. Так обстоит дело, например, с цитоскелетными белками тубулинами. Давно известны белки FtsZ, отдаленно похожие по последовательности на тубулин и широко распространенные у бактерий и архей. Они собираются в пластины и трубки и необходимы для деления прокариотических клеток. В 2012 году были найдены артубулины – близкие родственники тубулина – у двух видов архей рода
Аналогично у бактерий и архей широко распространены белки, отдаленно сходные с актином; их называют MreB. Они собираются в тонкие нити и участвуют в перетяжке делящейся бактериальной клетки. Другие дальние белковые родственники актина кодируются плазмидами (маленькими независимыми молекулами ДНК у бактерий) и служат для их расхождения при делении клетки. В 2009 году у нескольких видов группы Crenarchaeota были обнаружены кренактины, весьма похожие на актин эукариот (Ettema et al., 2011). Кренактины образуют нити, которые придают клеткам палочковидную форму, часто с разветвлениями. По своей последовательности кренактины близки не только к актинам, но и к белкам Arp2/Arp3 (Actin-related proteins), которые у эукариот образуют разветвления актиновых нитей. В некоторых случаях совместная полимеризация актина и Arp2/Arp3 на внутренней стороне клеточной мембраны достаточна для отшнуровки фагоцитозного пузырька (Yutin et al., 2009).
Наряду с артубулинами у