Мы видим, что эукариотическая клетка сочетает в себе черты архей и
Как мог происходить процесс появления эукариот? Во-первых, симбиоз, многочисленные переносы генов от разных бактерий и большая роль сигнально-регуляторных генов означают, что процесс происходил в сложном микробном сообществе. Во-вторых, митохондрии и стерол, исходно присущие всем эукариотам, свидетельствуют о том, что эукариоты эволюционировали в кислородной среде. Кислород указывает нам, что сообщество, в котором появились эукариоты, скорее всего, было цианобактериальным матом, о котором уже рассказывалось в главе 16. В-третьих, архейное происхождение базовых генетических систем (синтез белков, копирование и ремонт ДНК) эукариот свидетельствует о том, что у истоков процесса стояли археи.
Проще всего предположить, что процесс возникновения эукариотной клетки стал ответом на появление кислородного фотосинтеза и отравление среды кислородом. В обмене веществ многих архей, метаногенов и метилотрофов[20]
важную роль играют ферменты, содержащие никель. Они очень уязвимы для кислорода, а значит, архейный предок в условиях кислородного кризиса не мог больше жить по-старому и был вынужден радикально изменить обмен веществ.В современных бактериальных сообществах есть примеры тесного взаимодействия и соседства архей с бактериями. Например, метаногенные археи, поглощающие водород, живут в симбиозе с уксуснокислыми бродильщиками, выделяющими водород. В районах просачивания метана из морского дна живут в тесном симбиозе окисляющие метан археи и восстанавливающие сульфат бактерии, и между ними происходит обмен электронами при помощи соединений железа (Sivan et al., 2014). Так что архейный предок эукариот тоже мог жить в тесном симбиозе с какими-то бактериями. По самой популярной версии, он был метаногеном и получал водород от симбионтов – уксуснокислых бродильщиков.
Появление кислородного фотосинтеза вызвало крупный экологический кризис. Многие обитатели цианобактериального мата вымерли, другим же удалось создать свои или приобрести горизонтальным переносом чужие системы защиты от кислорода. Этот процесс произошел не мгновенно, а распространялся с поверхности в глубокие слои мата. К моменту появления серьезных проблем у метаногенов их соседи сверху уже имели системы адаптации к кислороду. Многие микробы в состоянии стресса начинают активно поглощать ДНК из внешней среды – таким способом наша архея приобрела гены, необходимые для защиты от кислорода, и новый обмен веществ, скорее всего, молочнокислое брожение. Сквален-монооксигеназа, необходимая для синтеза стеролов, могла исходно служить для защиты от кислорода. Механизм проводимой ею реакции очень похож на поставленное под контроль перекисное окисление липидов, одну из форм кислородного повреждения клеток. Отсутствие клеточной стенки, актиновый цитоскелет для поддержания вытянутой и ветвистой формы клетки и стеролы позволили ей перейти к фагоцитозу и успешно конкурировать с соседями-бактериями. Мембрана высокой текучести, подходящая для фагоцитоза, плохо держит мембранный электрический потенциал. Но предок эукариот в это время получал энергию путем брожения и мало зависел от мембранных энергетических процессов.
Тем временем в верхних слоях мата пурпурные фотосинтезирующие бактерии отработали аэробное дыхание, после чего органические кислоты, выделяемые бродильщиками нижних слоев, превратились для них в ценный ресурс. Эти аэробы стали оптимальными партнерами для симбиоза с фагоцитирующими бродильщиками. Фагоцитирующий предок эукариот сначала поглощал их как добычу, затем стал откладывать их переваривание и сначала подращивать на своих продуктах брожения, а потом симбионты стали отдавать хозяину АТФ и были оставлены в живых окончательно. Эти события в чем-то похожи на переход древних людей от охоты к скотоводству.