Несомненно, размеры кишечника, число видов в нем и параметры потока у личинки рыбы сильно отличаются от ваших. Как эти характеристики зависят от размера животного? Можно ли считать ваш желудочно-кишечный тракт увеличенным вариантом рыбьего или уменьшенным вариантом слоновьего? Мы пока не знаем. Несмотря на огромный интерес к микробиому человека и приличный массив работ по избранным животным моделям, кишечную экосистему других животных изучают без энтузиазма. Но эти неясности подводят нас к еще более широкому вопросу – масштабированию. Оказывается, существуют общие правила, по которым физические силы изменяются в зависимости от размера и формы, и результаты их действия кардинально различаются у организмов разных размеров. Как раз на эти правила мы и направим наше внимание.
Глава 10. Восприятие масштаба
Поразительно, как велик разброс размеров у существ, живущих на нашей планете. Синий кит, длина которого от головы до хвоста составляет несколько десятков метров, примерно в 10 тысяч раз крупнее муравья. Со времен Левенгука, то есть с XVII века, мы знаем, что подобные муравью животные занимают далеко не самое нижнее, а скорее среднее положение на природной масштабной шкале: сам муравей в 10 тысяч раз крупнее мельчайшей из бактерий. Не менее внушительно и разнообразие форм, сопряженное с разбросом размеров: крупные организмы ведь нельзя принять за раздутые вариации мелких1
.Мы точно не спутаем изящные лапки жука-носорога с толстыми ногами носорога, даже если первого увеличим до размеров второго (см. рисунок). Фотосинтезирующие водоросли округлы и компактны, и ни одна из них не ветвится так же неистово, как деревья, хотя задача у них одна – улавливать солнечный свет и углекислый газ. Различия распространяются и на модели поведения: акулы обычно двигают хвостовым плавником, а у плавающих бактерий мы такого не наблюдаем. И скоро поймем почему.
Как и в прошлых главах, мы можем спросить, уживается ли такое поразительное многообразие жизни с какими-то общими, фундаментальными правилами, и ответ опять будет положительным. Размер, форма и поведение животных взаимосвязаны, и отношения между ними определяются физическими силами, которые действуют на этих животных, наряду со средой обитания. Разобраться в этих хитросплетениях нам поможет полезная концепция
Чтобы связать размер, геометрию и другие характеристики с функционированием животных и растений, прибегнем к нескольким математическим хитростям. Одна из них – освобождающая неточность.
Насколько велика лошадь? Ответ на этот вопрос вам известен. Нам не нужно выискивать замеры роста лошадей или штудировать книги по лошадиной анатомии. Не стоит даже задумываться о том, какое расстояние я имею в виду – от копыта до плеча, от головы до хвоста или какое-то другое. Все мы знаем, что размеры лошади не выйдут за порядок метра. Она больше 0,1 метра и меньше 10 метров, какую бы породу мы себе ни представили. Рост нашей гипотетической лошади – будь он хоть 1, хоть 1,5, хоть 2,53 метра – важен, если мы вяжем ей свитер, но совершенно не имеет значения, если мы хотим понять, почему кости у лошади толще, а метаболизм медленнее, чем у 0,1-метровой мыши. Размеры живых существ варьируют в огромном диапазоне, и мелкие детали не определяют взаимосвязь между размером и функцией.
Припомним размеры нескольких живых организмов. Возьмем для начала муравья длиной около 0,001 метра (1 миллиметра) и типичный вирус диаметром около 0,0000001 метра.
Писать многочисленные нули и отслеживать их должное количество утомительно. Поэтому обратимся к экспоненциальной записи и будем представлять число как 10 в нужной нам степени. Так, число 100 – это 10 x 10, то есть 102
. Число 10 000 – это 10 x 10 x 10 x 10, или 104. Следовательно, 1 000 000 = 106, а 10 = 101. Что такое 10 в нулевой степени, то есть 100? Это на одну степень меньше, чем 101: поделив 101 на 10 получим 1. То есть 100 = 1. (По той же логике