В знаменитой статье 1977 года «Жизнь при малом числе Рейнольдса» (
При низких числах Рейнольдса потоки обратимы. Если я возьму такую же чашку кофе и волшебным образом увеличу вязкость жидкости в миллион раз, сила вязкого трения выйдет на первый план, и состояние жидкости станет обратимым. Когда я проведу ложечкой в одну сторону, сливки вроде бы смешаются с кофе, но если я верну ложечку обратно по той же траектории, каждая частица жидкости тоже пройдет обратно по своей траектории, и сливки в итоге отделятся от кофе: мы увидим компактное сливочное пятно, неотличимое от исходного. Я очень люблю показывать на занятиях похожий фокус, когда во вращающемся цилиндре краситель смешивается с очень вязким кукурузным сиропом, а затем словно по волшебству отделяется от него. (Этот эффект в классическом учебном видео демонстрирует специалист по гидродинамике Джеффри Инграм Тейлор, ссылка есть в примечаниях3
.)Какое отношение это имеет к бактериям? Число Рейнольдса снижается как с повышением вязкости, так и с уменьшением скорости и размера. Как мы отметили, плавающая в воде бактерия живет в мире очень низких чисел Рейнольдса. Пёрселл понял, что в силу обратимости потока в их среде микроорганизмы просто не могут плавать с помощью возвратно-поступательных движений. Дело не в том, что у них не нашлось подходящих генов и не выработались необходимые биохимические реакции, а в том, что маленьким законы физики не позволяют так добраться куда бы то ни было. Если бактерия взмахнет какими-то своими жесткими отростками в одну сторону и продвинется вперед…
…она вернется назад на то же самое расстояние, когда приведет их в исходное положение:
Если траектории отростков не меняются, так будет происходить при любых скоростях возвратно-поступательных движений. Пёрселл назвал это
Как же тогда плавают микробы? Как угодно, но только не с помощью возвратно-поступательных движений. Одна из типичных тактик – вращение единственным или несколькими спиралевидными жгутиками.
Пока ротор не вращается в обратную сторону, жгутик не возвращается назад по пройденному пути и непрерывно толкает организм вперед. Некоторые микробы передвигаются, выгибаясь и извиваясь, но следят, чтобы их изгибы сразу же не повторялись. Еще один способ – махать поверхностными ресничками так, чтобы их обратный ход не был противоположен прямому. Реснички отводятся в одну сторону…
…а затем сгибаются при возвращении назад:
Конечно, вы далеки от микроскопических масштабов, но тоже постоянно пользуетесь таким движением: реснички выстилки вашей дыхательной системы продвигают и выталкивают наружу слизь, удерживающую микробы.
Таким образом, мир кита в корне отличается от мира бактерии. Чтобы преодолевать разделяющие их порядки величин, живым существам нужно не только уменьшаться или разрастаться, но и менять саму модель своего поведения.
Как мы увидели, разница в размерах может влиять на способ действий животных. То же самое относится и к формам, причем эти характеристики связаны. Чтобы составить представление о сложных формах животных, для начала рассмотрим простые, на первый взгляд, аспекты геометрии. Допустим, у нас есть квадрат, и мы вдвое увеличиваем длину каждой из его сторон. Площадь квадрата увеличивается в 4 раза, что видно на рисунке…
…или становится понятно, если призвать на помощь математику: площадь первого квадрата равна L x L = L2
, где L – длина стороны; площадь второго квадрата равна (2L)2, или 4L2. Если вдвое увеличить длину каждой из сторон равностороннего треугольника, его площадь тоже увеличится в 4 раза, а если увеличить каждую из сторон втрое, площадь возрастет в 32, то есть 3 x 3 = 9 раз[43].Это верно и для треугольников с неравными сторонами при условии, что мы увеличиваем каждую из них в одинаковое число раз.