Вы наверняка встречались с экспоненциальной записью чисел и раньше. Здесь я объяснил ее принцип для иллюстрации закономерностей, в соответствии с которыми можно выстраивать связи между числами. На занятиях со студентами не естественно-научных направлений я часто спрашиваю: «Чему равно десять в нулевой степени?» Почти все отвечают: «Единице». Немногие, однако, могут объяснить почему. Я прошу их представить, как в разговоре с другом они сообщают, что 100
= 1, а друг восклицает: «Не верю!» Как же его убедить? Аргумент «так по правилу» не сработает (да и не должен), нужно просто описать, по какому принципу числа взаимодействуют друг с другом. Более того, поняв эти закономерности, вы сможете при необходимости самостоятельно выводить правила, а не полагаться на припоминание заученного. Это освобождает.Но вернемся к нашему списку биологических объектов, которые я расположил в порядке возрастания их типичных размеров (в степенях числа 10):
Вы можете составить и собственный список, со своим диапазоном степеней числа 10. Как же меняются физические силы, действующие на животных и растения, когда мы поднимаемся и спускаемся по лестнице размеров? Рассмотрим для начала плавание.
Кит скользит по океану, плавно двигая хвостом вверх-вниз. Подобным же образом перемещаются акулы и многие другие рыбы: хотя из-за вертикальной ориентации плавников хвосты у них ходят из стороны в сторону, движение это остается
Любое существо, плывущее в воде, при продвижении выталкивает жидкость. Делать это тяжело по двум причинам. Первая – инерция: нужно приложить усилие, чтобы придать ускорение лежащему на земле мячу, и точно так же нужно приложить усилие, чтобы придать ускорение какой-то части ранее неподвижной воды (далее она будет стремиться продолжать движение с той же скоростью). Вторая причина – вязкость: когда мы ложкой толкаем мед, он тянет за собой и мед, который с ней не соприкасается, и нам необходимо приложить силу для преодоления такого сопротивления (оно обусловлено трением между слоями вязкой среды). Действие этих двух сил неизбежно. Отношение инерционной силы к силе вязкого трения назвали
Если бактерия размером 10–6
метров движется в воде со скоростью около 10–5 метров в секунду, соответствующее число Рейнольдса составит примерно 10–5, или 0,00001, то есть будет совсем низким. Если же в воде плывет кит, число Рейнольдса будет около 108, то есть очень высоким, в 10 000 000 000 000 раз выше, чем для бактерии. (Теперь вы понимаете, почему нам интересен лишь порядок величин: совершенно неважно, какова точная длина бактерии, 1 x 10–6 или 2,61 x 10–6 метров, поскольку числа Рейнольдса в любом случае различаются на 13 степеней числа 10.) Следовательно, бактерия и кит живут в очень разных жидких мирах: мир бактерии спокоен, а мир кита – турбулентен.