Читаем Простое начало. Как четыре закона физики формируют живой мир полностью

Во всех перечисленных случаях площадь пропорциональна квадрату длины. Иными словами, площадь поверхности масштабируется как L2, что можно символически записать так: A ? L2. При увеличении длины в 2 раза мы увеличиваем площадь в 22, то есть в 4 раза. Замена L на 3L даст нам увеличение площади в 32 = 9 раз, а на 4L – в 4 x 4 = 16 раз.



Вероятно, вам кажется, что в этом нет ничего сложного. В конце концов, скажете вы, мы изучаем площади простых фигур в начальной школе. Но этот разбор подспудно объясняет нам то, о чем упоминают не часто. Нам не нужно знать математические формулы для вычисления площади той или иной фигуры. Если увеличить вдвое размеры любой фигуры, не меняя при этом ее форму, площадь фигуры увеличится в 4 раза. Вся сущность площади сводится к тому, что это геометрическая характеристика, масштабируемая как L2. Площадь круга, радиус которого увеличивается в 5 раз, возрастает в 52 = 25 раз, и нет нужды вспоминать соответствующую формулу. Площадь поверхности сферы, радиус которой увеличивается в 10 раз, возрастает в 100 раз. Площадь левого пятна на рисунке в 4 раза меньше площади правого, которое в поперечнике больше лишь вдвое:



Объем тела масштабируется как его длина в кубе, то есть L x L x L = L3. Чтобы убедиться в этом, можно нарисовать кубики (или другие тела, если вам хватит смелости) и показать, что удлинение каждой из сторон в 2 раза увеличивает объем в 23 = 8 раз, удлинение их в 3 раза увеличивает объем в 33 = 27 раз и так далее. И снова форма не имеет значения. Если увеличить радиус сферы в 4 раза, ее объем вырастет в 43 = 4 x 4 x 4 = 64 раза. Если вдвое сократить длину трехмерной кляксы, сохранив ее форму, объем новой кляксы составит 1/8 от исходного.

Наконец, надо отметить, что при увеличении или уменьшении тела без изменения формы соотношение его размеров сохраняется. Если при пропорциональном увеличении треугольника его высота прирастает вдвое, то удваивается и основание. Все длины масштабируются так же, как L, что записывать вроде бы странновато, зато полезно держать в уме. Подобным образом все площади пропорциональны другим площадям: если мы увеличиваем тело так, что площадь его сечения возрастает в 4,7 раза, площадь его поверхности возрастает в те же 4,7 раза.

Универсальность всех этих правил масштабирования – их равное действие в отношении и длины, и площади, и объема – позволяет, как мы вскоре увидим, применять их к вопросам очертаний и размеров даже самых сложных органических форм. Но сначала ненадолго вернемся к бактериям. Из главы 9 мы узнали, что в вашем теле бактериальных клеток не меньше, чем человеческих, – и это слегка пугает, если думать лишь об их количестве, не учитывая занимаемое ими пространство. Диаметр типичной бактерии примерно в 10 раз меньше диаметра типичной человеческой клетки. Следовательно, ее объем меньше в 103 = 1000 раз. Хотя микробов очень много, в сравнении с человеческими клетками их объем в вашем теле ничтожен.

Подобны ли формы больших и малых животных? Мы можем оценить это довольно точно, количественно, не ограничиваясь визуальным наблюдением. Как мы видели, если фигуры подобны, их объемы масштабируются как длина в кубе, а площади – как длина в квадрате. Верно и обратное: если объемы у какой-то выборки животных пропорциональны длине в кубе, а площади – длине в квадрате, то их формы в целом подобны. Выражаясь научным языком, они демонстрируют изометрическое масштабирование. Если объемы животных не пропорциональны, например, кубу высоты – скажем, если животные, увеличиваясь, становятся непропорционально коренастыми или если их размеры вообще не согласуются друг с другом при масштабировании, – мы понимаем, что природа отказалась здесь от изометрии и, видимо, руководствуется другими принципами. И сложнее всего как раз понять законы масштабирования реальных живых существ. Для этого можно, конечно, прибегнуть к уравнениям, но легче и разумнее использовать визуальный подход, а именно: нашу вторую математическую хитрость – инструмент под названием логарифмические графики.

Допустим, мы хотим построить график зависимости объема куба от длины его ребра. Обычно он выглядит так, как на рисунке слева, поднимаясь вверх по кубической параболе.



Перейти на страницу:

Похожие книги

Происхождение мозга
Происхождение мозга

Описаны принципы строения и физиологии мозга животных. На основе морфофункционального анализа реконструированы основные этапы эволюции нервной системы. Сформулированы причины, механизмы и условия появления нервных клеток, простых нервных сетей и нервных систем беспозвоночных. Представлена эволюционная теория переходных сред как основа для разработки нейробиологических моделей происхождения хордовых, первичноводных позвоночных, амфибий, рептилий, птиц и млекопитающих. Изложены причины возникновения нервных систем различных архетипов и их роль в определении стратегий поведения животных. Приведены примеры использования нейробиологических законов для реконструкции путей эволюции позвоночных и беспозвоночных животных, а также основные принципы адаптивной эволюции нервной системы и поведения.Монография предназначена для зоологов, психологов, студентов биологических специальностей и всех, кто интересуется проблемами эволюции нервной системы и поведения животных.

Сергей Вячеславович Савельев , Сергей Савельев

Биология, биофизика, биохимия / Зоология / Биология / Образование и наука