Итак, то обстоятельство, что Гуссерлю была так важна вся эта проблематика, в определенной степени связано с влиянием Кантора. А то, что будущий основатель феноменологии стремился овладеть ею уже на новом, не платоновском пути, свидетельствует о понимании молодым ученым также и математических трудностей, ориентаций, для осознания и признания которых великому Кантору не хватило времени жизни и (рано подорванных) духовных сил. Но осмеливаюсь думать, что и Кантора в принципе удовлетворила бы какая-нибудь более современная платформа, на основе которой можно было бы ввести особый «мир» (или даже множество «миров») идеального и обосновать методологию работы над ним. Вот что важно: на пути к «Логическим исследованиям» и в самом этот произведении Гуссерль будет биться над тем, чтобы разработать и предъявить такую концепцию, необходимую и пригодную для понимания как математических сущностей-целостностей, так и подобных «чистых», отвлеченных образований (или, выражаясь словами Больцано, «истин в себе») в других дисциплинах, прежде всего в «чистой» логике, т. е. концепцию, пригодную для интерпретации всех законов точных наук. (К сожалению, в начале XX века Кантор, как говорилось, тяжело заболевший, вряд ли мог вникнуть в смысл этой теории сущностей своего коллеги и друга Э. Гуссерля.) На протяжении всего многолетнего развития феноменологии Гуссерля не оставлял интерес к этой концепции, философско-математические (и в том числе связанные с деятельностью Кантора) истоки которой не вызывают сомнения.
Что касается самого Кантора, то ему было исключительно важно как бы оснастить свой сущностно-логический подход к математической работе и ее понятиям некоторыми философско-метафизическими предпосылками и основаниями. Он размышлял над тем, как методологически (и даже личностно) обеспечить выход математика из сферы «жизненного мира» (термин позднего Гуссерля), даже из обремененного всякими «определенностями», реальностями математического исследования – в «самостоятельные» и исключительно своеобразные миры, где, так сказать, своей жизнью «живут», «взаимодействуют» математические сущности. Ничего мистического и идеалистического в подобном подходе нет. Вдохновляет и по-своему поражает тот факт, что после «Философии арифметики» Гуссерль сосредоточился на разрешении
Любопытно, что в деятельности Кантора описываемые здесь общие идеи, повороты внимания, методологические поиски (как сказано, философские, эстетические, даже теологические) одновременно влияли и на самые конкретные математические размышления и устремления. Что касается конкретной математической работы, то даже размежевания с линией Кронекера восходили к означенным методологическим поискам. Если Кронекер и его сторонники все время акцентировали «определенность», в некотором смысле «материальную» реальность объектов и средств математической работы, то Кантор настаивал на необходимости методологического «очищения», движения ко всё более «чистым», общим, как бы «парящим в воздухе чистого математического фантазирования» математическим образованиям. Правда, и их он считал «реальными» – но в совершенно особом значении и смысле.