В плане метафизических, эстетических устремлений считаю весьма метким следующее наблюдение Герберта Мешковского, исследователя учения Кантора: «Можно сказать так: теория Кантора – подтверждение (Beleg) того факта, что человеческий дух может обретать такие структуры, для коих в природе нет никакого прообраза. Деятельность творческого математика возможно сравнивать с творчеством современного художника, который в своем произведении стремится воплотить некоторые ви́дения, для которых в природе нет прообраза. Миры, создаваемые благодаря междисциплинарной деятельности математиков [правда], кажутся нам более значимыми, чем те, которые могли бы открыть своенравные художники. Но у художников, возможно, иное мнение по этому вопросу. Во всяком случае, у творений математиков есть подлинный шанс, что они когда-то станут пригодными для описания реального мира, пусть сначала они и не демонстрируют таких возможностей».[159]
Отвлекаясь от вопроса о сравнительной значимости «миров» математики и искусства, можно признать вполне точным это фиксирование мотивации математиков, свободно и творчески работающих в совместно, на протяжении всей истории создаваемых и видоизменяемых «идеальных мирах».В подтверждение своего суждения Г. Мешковский приводит следующий карандашный набросок, найденный в бумагах Кантора после его смерти и очерчивающий введение к работе «О связи учения о множестве с арифметикой». Он условно датируется 1913 годом: «Без крупицы метафизики, по моему мнению, нельзя обосновать ни одну точную науку. Да извинят мне те немногие слова, которые я во Введении
отваживаюсь сказать об этой, в новое время по большей части столь скомпрометированной доктрине. Метафизика, как я ее понимаю, есть учение о сущем (vom Seienden), или, что то же самое, о том, что наличествует здесь (da ist), т. е. существует, а следовательно, о мире, каков он сам по себе, а не каким он [нам] является. Все, что воспринимается с помощью органов чувств и что представлено нам с помощью нашего абстрактного мышления – не-сущее (Nichtseiende) и в лучшем случае есть след в себе сущего.А то, что сущее есть, мы познаем не через наше абстрактное мышление; скорее, мы ощущаем
это в нас самих, и мы тем самым совершенно уверены в сущем, не нуждаясь в доказательствах этого. Мы суть (sind), т. к. мы существуем, следовательно, сущее есть, дано. Не только мы есть, наличествуем (sind da); и другие, отличные от нас сущие есть, наличны (sind da); мы живем вместе и составляем один мир, части которого сообщаются друг с другом. Тот, кто отваживается отрицать это, пусть погрузится в свое я и посмотрит, далеко ли он продвинется. Любое сущее может стать предметом нашего мышления. Тогда мы называем его вещью, а любое не-сущее, которое становится предметом нашего мышления, это не-вещь (Unding, non ens). Вот я и есть вещь, и всякий другой человек – тоже вещь».[160]Процитировав этот выразительный отрывок, математик Г. Мешковский справедливо замечает: «С этими положениями согласится любой мыслитель, который сегодня, вместе с Хайдеггером, сетует на “забвение бытия” современным человеком».[161]
Но тут Мешковский ставит вполне резонный вопрос: а что общего имеет теория множеств с таким отвлеченным философским понятием, как «бытие»? Не стану приводить его конкретные доводы, выражу лишь общий смысл, как я его понимаю.Этот уважаемый математик различает, даже разводит те тезисы, положения, выводы учения Кантора, которые сохранили свое непреходящее значение, и те онтологизации, за которыми стояла попытка как бы превратить математические (и другие научные) понятия в некоторые якобы самостоятельные сущие. Скажем, актуально-бесконечное выступает у него в двух «обличьях» – in abstracto
и in concreto. И как раз во втором случае Кантор принимает «множество атомов универсума за исчислимое». Ссылаясь на пространное письмо Кантора к Миттаг-Лефлеру от 16 ноября 1884 года, в котором Кантор (надо сказать, постоянно колеблясь и противореча самому себе) в конце концов высказывается за принятие некоторой «точечной», но все же материалистической атомистики или, вернее, учения об элементах – как пишет Кантор «сотворенных, но после сотворения самостоятельных, неразрушимых, простых, непротяженных, наделенных силой элементах».[162] Иными словами, философские размышления о сущих «самих по себе» были для Кантора никак не посторонними и не второстепенными. Они укладывались в общую картину мира и одновременно позволяли этому замечательному математику развить конкретную часть своего учения об актуально-бесконечном. Г. Мешковский делает вывод: «Доказанные в то время Вейерштрассом и Миттаг-Лефлером положения теории функций сохраняют свое значение и сейчас; канторовское доказательство неисчислимости континуума и сегодня есть прочный исследовательский результат, а вот “гипотезы” о структуре материи давно устарели».[163]