Читаем Расчет нефтяных аппаратов методом конечных элементов полностью

Например, в работе Шапиро и Даркова [36.с.596] указывается: «…в связи с полярной симметрией цилиндра и нагрузки, нормальные напряжения являются главными напряжениями…».

Приведенное утверждение Шапиро в корне некорректно.

В теории тонких оболочек отсутствующие касательные напряжения присутствуют.

__

Ильюшин [23,с.177] пишет: «Изменение прямого угла между гранями ВА и AD при деформации не происходит» и далее отсюда следует, что и удлинение равно нулю.

Это неверно. Между гранями не прямой угол, грань ВА криволинейная, является дугой. При деформации радиус дуги увеличивается. А следовательно и удлинение не равно нулю.

Далее Ильюшин пишет [23,с.177]: «Рассмотрим случай… Обобщенный закон Гука был ранее записан нами в декартовых координатах. Но так как мы рассматриваем деформированное и напряженное состояние в точке, то этот закон имеет тот же вид в любой криволинейной ортогональной системе координат…». Закон Гука должен быть записан в сферических координатах для твердого тела, но не для точки.

__

<p>4.3 Оценка прочности тонкостенных сосудов</p>

Напряженное состояние металла стенки тонкостенного сосуда (сосуда на внутреннее давление до 21МПа) оценивается по третьей теории прочности, как указывается в работе [17] (в этой работе в предисловии отмечена Зусмановская С.И.). Также в этой работе указано о получении расчетных формул для тонкостенных сосудов из безмоментной теории тонких оболочек.

Приведем данные по третьей теории прочности по работе Н.М. Беляева [18,с.136]. Эта теория также обозначается как теорией наибольших касательных напряжений, теория вязкого разрушения. Теория применяется для пластических материалов, к которым относятся стали, применяемые для изготовления сосудов и аппаратов стальных сварных.

Критерием прочности по третьей теории являются касательные напряжения, которые действуют по площадкам среза при растяжении и разрушении материала из-за пластических деформаций. Текучесть или разрушение (опасное состояние материала) наступает когда наибольшее касательное напряжение станет равным некоторой константе. Причем, Н.М. Беляев отмечает о независимости от вида напряженного состояния, то есть плоского или трехмерного. К недостаткам теории относится не учет среднего главного напряжения, так как по данным Беляева опыты подтверждают влияние этого напряжения.

Условие прочности по третьей теории прочности по общеизвестной формуле:

В эту формулу надо подставлять главные напряжения, как указывается во всей литературе.

Понятие главных напряжений относится к теории упругости. А вот понятие кольцевых и меридиональных напряжений уже относится к теории тонких оболочек. Это разные виды напряжений, из нельзя путать одно с другим и подставлять одни вместо других. Правильно по кольцевым и меридиональным напряжениям найти главные напряжения и затем по ним проводить проверку выполнения условия прочности.

Теория упругости и теория оболочек не являются одной общей теорией. Теория упругости является более глубокой и фундаментальной наукой по сравнению с теорией тонких оболочек. Приведем по этой проблеме мнение академика В.В. Новожилова, известного автора по математической теории оболочек. В его работе [19.с.205] указывается, что теория тонких оболочек воспринимается как «гипотетическая надстройкой над теорией упругости» за счет постулирования допущений, сводящий трехмерную задачу к двухмерной. По мнению Новожилова проблемы теории оболочек как тонких так и толстых необходимо решать используя теорию упругости.

Перейти на страницу:

Похожие книги