Читаем Расчет нефтяных аппаратов методом конечных элементов полностью

В теории упругости при описании напряженного состояния вокруг точки выделяется элемент сплошной среды. Размеры этого элемента должны быть такими, чтобы обеспечивалось условие сплошности [20]. В точку этот элемент не стягивается, как некомпетентно писал один из моих оппонентов. И даже при стягивании в точку, направления кольцевых и главных напряжений не совпадут.

__

В теории тонких оболочек проблема оценки напряженного состояния не затрагивается. И возникновение проблемы подстановки кольцевых и меридиональных напряжений вместо главных напряжения является даже не ошибкой в классической теории, а неверным обращением с расчетными формулами инженерами.

__

Покажем эту ошибку в оценке напряженного состояния стенки тонкостенного сосуда (сосуда до 21 МПа).

Для этого покажем различие в направлениях кольцевых напряжений и главных напряжений, совмещенных в одной области. Аналогично тому, как при изгибе балки показывается отличие в направлениях главных напряжений от изгибающих [18].

В теории оболочек из стенки выделяется сегмент в виде трапеции с криволинейными основаниями, по граням которого действуют напряжения.

Совместим этот выделенный сегмент с кубическим элементом и покажем для упрощения только вид в плане (сверху):

На рисунке: Q – равнодействующая сил внутреннего давления, уравновешивается касательными напряжениями по граням кубического элемента. По этим же граням действуют нормальные напряжения, не совпадающие с кольцевыми напряжениями по направлению.

Касательные напряжения по противоположным граням заменим на равнодействующую силу, приложенную напротив силы Q (т.е. точка приложения выбрана посередине между векторами сил):

Теперь найдем ориентацию кубического элемента, по граням которого действуют только главные напряжения. То есть найдем площадки главных напряжений по методике [18], [21]. Для этого используем круг Мора. В результате получим:

Как видно из рисунка, установлено направление главных напряжений и площадок, по которым они действуют.

Теперь совместим найденные направления главных напряжений с направлениями кольцевых напряжений (аналогично тому, как в сопротивлении материалов это производится при изгибе балки [18]):

Как видно из рисунка, направления главных напряжений не совпадают с направлениями кольцевых напряжений. И кольцевые напряжения не являются главными напряжениями.

__

В теории упругости поднимается вопрос о нахождении напряжений по любым площадкам внутри кубического элемента. Площадку с кольцевым напряжением в качестве такой произвольной площадки под произвольным углом рассматривать нельзя.

Против приведенных данных возражение на основании [22,с.96] не выдерживает критики. В этой работе в рассмотрении условий пластичности для плоского напряженного состояния (а стенка не в плоском напряженном состоянии по третьей теории прочности) написано следующее:

«… главные оси тензора напряжений для плоского напряженного состояния обозначим через ξ и η.» и далее «… напряжения и будут отождествляться с , или .».

Эта запись означает, что оси ξ и η являются главными осями – осями главного тензора напряжений. А для главного тензора напряжений, главные напряжения в теории упругости в зависимости от величины обозначаются , или . И действительно, будет тождество на том основании, что те же самые оси и те же самые напряжения, на с другим обозначением.

__

В точку ни сегмент, ни кубически элемент не стягивается. Так как эти два твердых тела имеют минимальные размеры, но такие, чтобы обеспечивалось условие сплошности среды, то есть надмолекулярные размеры. Оппонировать с введением пределов «lim» и приравниванием главных напряжений к кольцевым является некорректным.

Также отметим, что кубический элемент сплошной среды находится в равновесии так как касательные напряжения по граням создают относительно ребер куба равные крутящие моменты. Равенство моментов происходит за счет равенства площадей граней куба. А у сегмента площади верхних сторон и боковых отличаются. Следовательно, сегмент в отличии от куба не может находится в равновесном состоянии.

Оценка прочности МКЭ имеет большее теоретическое обоснование.

__

Приведенные данные по определению направлений главных напряжений имеют второе значение по сравнению с ошибкой в осесимметричной задачи теории упругости. Эта ошибка будет показана ниже.

<p>4.4 Выводы. Обоснование приоритета МКЭ</p>

1. Теория упругости имеет большее обоснование по сравнению с выведенной из неё теорией тонких оболочек и расчет аппаратов необходимо проводить в рамках теории упругости.

2. Пространственная задача теории упругости на сегодняшний момент времени выглядит обоснованнее осесимметричной задачи теории упругости.

Перейти на страницу:

Похожие книги