Общепринято полагать эти различия присущим следствием различий между телами особей, или других дискретных «носителей». Цель следующих трёх глав состоит в демонстрации того, что мы можем освободить концепцию фенотипических различий от дискретного носителя как единого целого, в чём и состоит смысл названия «расширенный фенотип». Я покажу, что обычная логика генетической терминологии неизбежно ведёт к заключению, что мы можем говорить о генах, как имеющих расширенные фенотипические эффекты; эффекты, которым можно не экспрессироваться на уровне любого конкретного носителя. Продолжая свою раннюю статью (Докинз 1978a) я предприму пошаговый подход к расширенному фенотипу – начиная с традиционных примеров «обычных» фенотипических эффектов, и постепенно так расширю концепцию фенотипа за их пределы, что эту непривычную нам непрерывность будет легко проследить. Идея о генетической детерминации продуктов поведения животных, вроде домиков ручейников или ловчих сетей пауков – дидактически полезный промежуточный пример. Она будет главной темой этой главы.
Но сначала рассмотрим ген А, прямой молекулярный эффект которого состоит в синтезе «чёрного» белка, который непосредственно окрашивает кожу животного в чёрный цвет. Тогда единственным окончательным эффектом гена, в простом молекулярном смысле будет синтез этого чёрного белка. Но является ли ген А «геном чёрной окраски»? Здесь есть важный момент, который уместно подчеркнуть – это утверждение как дефиниция зависит от того, как изменяется популяция. Предположим, что А имеет аллель А'', которая неспособна синтезировать чёрный пигмент, и таким образом особи, гомозиготные для А, как правило были бы белыми. В этом случае ген А действительно будет «геном чёрной окраски», в том смысле, в каком хочу использовать эту фразу. Но может оказаться так, что все фактически имеющиеся в популяции вариации цвета кожи являются следствием вариаций в совсем другом локусе, B. Прямой биохимический эффект B – синтез белка, который не является чёрным пигментом, но который активен как фермент, один из косвенных эффектов которого (по сравнению с его аллелью B), на какой-то отдалённой стадии, состоит в облегчении синтеза чёрного пигмента в клетках кожи.
Разумеется, ген A, белковый продукт которого – чёрный пигмент, совершенно необходим для того, чтобы особь была чёрной – как впрочем и тысячи других генов – хотя бы потому, что они совершенно необходимы для того, чтобы особь вообще существовала. Но я не стану называть А «геном чёрной окраски», если часть вариаций окраски в популяции происходят не из-за недостатка A. Если все особи популяции поголовно обладают A, и отдельные особи не черны единственно потому, что они обладают геном B'', а не B, то мы должны говорить, что именно B, а не A, является «геном чёрной окраски». Если на черноту кожи будут воздействовать вариации в обоих локусах, то мы будем трактовать и А, и B как «гены чёрной окраски». Здесь уместно ещё раз подчеркнуть, что и А, и B потенциально имеют право назваться «генами черноты», в зависимости от альтернатив, существующих в популяции. Тот факт, что причинно-следственная цепь, ведущая от А к выработке молекулы чёрного пигмента коротка, а для B – длинна и извилиста, не имеет значения. Большинство генетических эффектов, наблюдаемых как биологами, так и этологами, длинны и извилисты.
Коллеги-генетики утверждают, что фактически не существует никаких генетически детерминированных поведенческих черт, потому что все доселе обнаруженные эффекты такого рода оказывались «побочными продуктами» более фундаментальных морфологических или физиологических эффектов. Но спрашивается – то, что мы полагаем любым генетическим признаком – морфологическим, физиологическим или поведенческим, не есть ли «побочный продукт» кое-чего более фундаментального? Если мы подумаем над этим как следует, то поймём, что все генетические эффекты кроме отдельных полипептидных цепей – это действительно «побочные продукты».