Статистическая независимость связана с понятием причинности: если одно событие влияет на другое, они не являются статистически независимыми (хотя, как мы еще увидим, обратное неверно: события, не связанные отношениями причины и следствия, могут оказаться зависимыми статистически). Вот почему ошибка игрока — это ошибка. Одно вращение колеса рулетки никак не влияет на другое, поэтому азартный человек, рассчитывающий, что череда «черного» вымостит дорожку «красному», проиграется до нитки: вероятность выпадения «красного» всегда чуть меньше 0,5 (потому что есть еще зеленые ячейки 0 и 00). Заметьте, что ошибаться относительно статистической независимости можно и так и эдак: можно ошибочно предполагать как независимость (закон Мидоу), так и зависимость событий (ошибка игрока).
Зависят события друг от друга или нет, очевидно не всегда. Одна из известнейших попыток приложить науку о когнитивных искажениях к решению житейских загадок — анализ феномена «горячей руки» в баскетболе, произведенный Тверски в сотрудничестве с социальным психологом Томасом Гиловичем[193]
. Любому болельщику известно, что время от времени баскетболист может быть «в ударе», «на кураже» или «на драйве»; тут сразу вспоминается «серийный бомбардир» Винни Джонсон, который в 1980-е гг. играл на позиции атакующего защитника в Detroit Pistons и заслужил прозвище «Микроволновка», потому что умел молниеносно «разогреть» атаку. Вопреки мнению болельщиков, тренеров, игроков и спортивных журналистов, Тверски и Гилович пришли к выводу, что «горячая рука» — иллюзия, своего рода ошибка игрока. Проанализированные ими данные свидетельствовали, что результат каждого броска статистически независим от предшествующей череды попыток забросить мяч в кольцо.Однако, не изучив данные, неверно отрицать реальность феномена «горячей руки» по примеру ошибки игрока просто из-за отсутствия причинно-следственной связи. В отличие от колеса рулетки, тело и мозг спортсмена обладают памятью, и думать, что всплеск энергии или уверенности в себе может длиться несколько минут подряд, — отнюдь не суеверие. Так что другие статистики не нанесли удара по научному мировоззрению, когда покопались в данных еще раз и пришли к выводу, что светила науки ошиблись, а фанаты были правы: феномен «горячей руки» в баскетболе
Ошибка ошибки «горячей руки» преподает нам три урока. Во-первых, события могут быть статистически зависимыми не только если одно из них является причиной другого, но и если оно влияет на то, какое событие выбирается для сравнения. Во-вторых, ошибка игрока может возникать благодаря отчасти рациональному свойству восприятия: когда мы ищем цепочки идентичных исходов в длинном ряду событий, череда определенной длины действительно с большей вероятностью прервется, чем продолжится. В-третьих, вероятность действительно бывает глубоко неинтуитивна: даже знатоки способны наделать ошибок в вычислениях.
Теперь давайте рассмотрим вероятность