Формула вероятности разделительного высказывания подсказывает, где ошибся телеметеоролог, заявивший, что в выходные обязательно прольется дождь, потому что и в субботу, и в воскресенье вероятность дождя составляет 50 %: сложив две вероятности, он дважды посчитал все те выходные, в которые дождь будет идти два дня
подряд, то есть забыл вычесть конъюнкцию, равную 0,25. Он применил правило, которое работает для исключающего или (XOR), а именно А или В, но не то и другое одновременно. Вычисляя дизъюнкцию взаимно исключающих событий, складывать их вероятности можно: их сумма всегда будет равна единице. Вероятность, что ребенок окажется либо мальчиком (0,5), либо девочкой (0,5), равна сумме двух этих вероятностей, то есть 1, других вариантов нет (для наглядности я придерживаюсь здесь идеи гендерной бинарности и не учитываю интерсекс-детей). Забыв об этой разнице и спутав пересекающиеся события со взаимно исключающими, можно получить умопомрачительные результаты. Представьте, что метеоролог предсказывает 50 %-ную вероятность дождя в субботу, в воскресенье и в понедельник и заключает, что на протяжении длинных выходных дождь прольется с вероятностью 1,5.Вероятность дополнения
события, а именно P(не-А) (А не случится), равна 1 минус вероятность P(А) (А случится). Это удобно, когда нам нужно оценить вероятность «как минимум одного» события. Помните Браунов с их то ли двумя, то ли одной дочкой? Как минимум одна дочка — это то же самое, что не все дети — сыновья, и вместо вычисления дизъюнкции (первый ребенок девочка или второй ребенок девочка) мы можем вычислить дополнение конъюнкции: 1 минус вероятность рождения двух мальчиков (которая равна 0,25), и получить в итоге 0,75. В случае двух событий неважно, какой из формул пользоваться. Но если нам нужно посчитать вероятность как минимум одного А в крупном наборе событий, правило дизъюнкции потребует кропотливого сложения и вычитания массы комбинаций. Гораздо легче вычислить вероятность «не все не-А», то есть 1 минус произведение всех вероятностей А.Предположим, например, что каждый год характеризуется 10 %-ной вероятностью начала войны. Каковы шансы, что на протяжении десяти лет разразится хотя бы одна война? (Давайте примем, что войны — независимые, а не контагиозные события, какими они, похоже, являются.)[195]
Вместо того чтобы прибавлять к вероятности войны в год № 1 вероятность войны в год № 2 и вычитать из этой суммы вероятность того, что война начнется и в год № 1, и в год № 2 и так далее для всех возможных комбинаций, мы можем просто вычислить шансы, что никакой войны за десять лет не вспыхнет, и вычесть их из единицы. Вероятность десяти мирных лет равна вероятности, что война не начнется в каждый отдельный год из этих десяти, а именно 0,9, умноженному само на себя десять раз (0,9 × 0,9 × …0,9, или 0,910, что равно 0,35). Вычтя 0,35 из единицы, получаем 0,65.* * *
И наконец, мы добрались до условной
вероятности: вероятности А при условии, что В верно, что записывается как Р(А|В). Смысл этого понятия прост: это всего лишь вероятность то в связке если-то. Рассчитать ее тоже не сложно: это вероятность (А и В), деленная на вероятность В. Тем не менее условная вероятность — источник бесчисленных конфузов, просчетов и промахов при оценке вероятности, начиная с ошибки, которую совершает безнадежный идиот из приведенного ниже комикса XKCD[196]. Он спутал простую вероятность, или базовую оценку риска гибели от удара молнии, Р(убит молнией) с условной вероятностью погибнуть от удара молнии при условии, что ты находишься на улице в сильную грозу: Р(убит молнией | на улице в сильную грозу).
Хотя расчет условной вероятности прост, интуитивно его не ухватишь, пока не представишь себе ситуацию и не конкретизируешь ее (как всегда). Взгляните на диаграммы Венна, где площадь областей на листе соотносится с числом исходов. Прямоугольник, площадь которого принимается за единицу, соответствует всей совокупности возможных исходов. Круг А заключает в себе все события А, и на рисунке слева вверху видно, что вероятность А равна соотношению площади круга А (выделенного темным цветом) к площади светло-серого прямоугольника — другими словами, числу случившихся событий, деленному на число его возможностей случиться. Рисунок справа вверху иллюстрирует вероятность (А или
В) — это вся темная зона, то есть площадь А плюс площадь В минус та долька, где множества А и В пересекаются — (А и В), а иначе мы посчитаем ее дважды. Эта же долька, Р (А и В), выделена темным цветом на нижнем левом рисунке.