Читаем Самая сложная задача в мире. Ферма. Великая теорема Ферма полностью

Это очень похоже на то, что делают сегодня, когда вычисляют производную, определение которой дал Коши только в XIX веке, и, приравнивая ее к нулю, находят максимумы и минимумы. Такое сходство привело к тому, что некоторые математики (Лагранж, Пьер-Симон Лаплас) и историки науки считали дифференциальное исчисление изобретением Ферма. К сожалению, они ошибались.

Верно, что Ферма приближался к методам современного дифференциального исчисления. Эта h, по мысли Готфрида Лейбница и Исаака Ньютона, — бесконечно малая величина, которая, говоря проще, не равна нулю, но может считаться при некоторых обстоятельствах за ноль. Только когда Коши удалось сформулировать понятие предела, эти идеи получили строгое математическое выражение.

Ферма не делал различия между конечными и бесконечно малыми величинами, по крайней мере в своих работах о максимумах и минимумах и касательных, которые появились в относительно раннее время его математической жизни. А это различие является основополагающим. Ферма считал, что А, расстояние от исходного корня, полностью произвольно: оно может быть большим или малым, по желанию. Очевидно, что эта мысль сильно отличается от понятия бесконечно малых, небольшая величина которых должна быть произвольной. На самом деле Ферма никогда не думал, что его максимумы и минимумы могут быть локальными, а не глобальными. Локальный максимум может быть найден только с помощью методов анализа бесконечно малых. В любом случае, справедливо заметить, что с помощью метода Ферма можно было даже определить, является решение максимумом или минимумом.

Предыдущее воспроизведение мысли Ферма основано на "Аналитическом исследовании". Достоверно известно, что тулузец начал с задачи, упомянутой Паппом, а историкам удалось восстановить на основе многочисленных записей его рассуждения. В любом случае, по своей неискоренимой привычке Ферма, даже когда формулировал шаги доказательства в "Аналитическом исследовании", был краток в своих объяснениях. Он опускал некоторые шаги, веря, что читатель сможет заполнить пробелы. Читатель должен был быть эрудитом, знающим наизусть, что такой-то шаг подтверждается теоремой Аполлония, другой шаг — теоремой Паппа, а третий верен, поскольку это уже доказал Виет. Более того — в изначальном варианте Methodus, как мы уже сказали, не было даже таких набросков доказательства, как в "Аполитическом исследовании"·, ни малейшего обоснования странных действий, которые предпринимал наш герой: Ферма ограничивался тем, что давал алгоритм. Очевидно, что инструкция без малейших объяснений, с делением на нуль, шокировала современников ученого, и те из них, кто приятельствовал с Ферма, попросили у него объяснений, а остальные безжалостно напали на него. Кроме того, Methodus ограничивался решением двух уже решенных задач, в которых находятся касательные к параболам. В сочинении, по крайней мере внешне, не было ничего нового, но содержалось много проблематичного.


Собственно, в Methodus Ферма сформулировал способ нахождения касательной к любой заданной кривой. Он с гордостью говорил, что этот метод абсолютно общий и работает всегда, но не обосновывал своего утверждения. Упомянутый им метод нахождения касательных, естественно, исходил из его же метода максимумов и минимумов. Действительно, Ферма понял, что, так как классические греческие кривые (конические сечения, окружности и прямые линии) были определены через пропорции, решить задачу касательной равносильно тому, чтобы найти минимум некоей пропорции между двумя величинами. Его метод максимумов и минимумов также работал для максимизации или минимизации некоторой величины или пропорции. Следовательно, нахождение касательной было его естественным применением.

Рассмотрим метод Ферма детально. Возьмем параболу, показанную на рисунке. Мы ищем касательную в точке В, прямую ВE. Ферма рассматривал произвольную точку О, внешнюю по отношению к параболе. Здесь ясно видно, что он был еще далек от понятия бесконечно малых; в анализе бесконечно малых точка О должна была находиться произвольно близко к точке В. Затем он рассмотрел свойство параболы, определенное Аполлонием в виде пропорции:

BC2/ZI2 - CD/DI,так как OI >ZI, CD/DI > BC2/OI.

По подобию треугольников ВСЕ и OIE получается, что

ВС/OI = СЕ/TE, поэтому CD/DI > CE2/IE2.

Пусть CD = d, CI = е и СЕ = а. Этот последний отрезок — подкасательная. Тогда

d/(d - e) > а2/(a - e)2

и d(a - е)2 > a2 (d - е), откуда da2 - 2dae + de2 > da2 - a2e.

Затем приравниваются оба члена неравенства: da2 - 2dae + de2 ≡ da2-a2e, и после сокращения и перестановки членов: de2 + a2e ≡ 2dae. При делении на е: de + a2 ≡ 2da. Наконец, Ферма игнорировал член, содержащий е: а2 = 2da, из чего а = 2d. Таким образом можно найти точку Е, определив подкасательную к параболе ( СE ).


КАСАТЕЛЬНЫЕ К МЕХАНИЧЕСКИМ КРИВЫМ

Перейти на страницу:

Похожие книги

Опасная идея Дарвина: Эволюция и смысл жизни
Опасная идея Дарвина: Эволюция и смысл жизни

Теория эволюции посредством естественного отбора знакома нам со школьной скамьи и, казалось бы, может быть интересна лишь тем, кто увлекается или профессионально занимается биологией. Но, помимо очевидных успехов в объяснении разнообразия живых организмов, у этой теории есть и иные, менее очевидные, но не менее важные следствия. Один из самых известных современных философов, профессор Университета Тафтс (США) Дэниел Деннет показывает, как теория Дарвина меняет наши представления об устройстве мира и о самих себе. Принцип эволюции посредством естественного отбора позволяет объяснить все существующее, не прибегая к высшим целям и мистическим силам. Он демонстрирует рождение порядка из хаоса, смысла из бессмысленности и морали из животных инстинктов. Принцип эволюции – это новый способ мышления, позволяющий понять, как самые возвышенные феномены культуры возникли и развились исключительно в силу биологических способностей. «Опасная» идея Дарвина разрушает представление о человеческой исключительности, но взамен дает людям возможность по-настоящему познать самих себя. Книгу перевела М. Семиколенных, кандидат культурологии, научный сотрудник РХГА.

Дэниел К. Деннетт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука
Люди на Луне
Люди на Луне

На фоне технологий XXI века полет человека на Луну в середине прошлого столетия нашим современникам нередко кажется неправдоподобным и вызывает множество вопросов. На главные из них – о лунных подделках, о техническом оснащении полетов, о состоянии астронавтов – ответы в этой книге. Автором движет не стремление убедить нас в том, что программа Apollo – свершившийся факт, а огромное желание поделиться тщательно проверенными новыми фактами, неизвестными изображениями и интересными деталями о полетах человека на Луну. Разнообразие и увлекательность информации в книге не оставит равнодушным ни одного читателя. Был ли туалет на космическом корабле? Как связаны влажные салфетки и космическая радиация? На сколько метров можно подпрыгнуть на Луне? Почему в наши дни люди не летают на Луну? Что входит в новую программу Artemis и почему она важна для президентских выборов в США? Какие технологии и знания полувековой давности помогут человеку вернуться на Луну? Если вы готовы к этой невероятной лунной экспедиции, тогда: «Пять, четыре, три, два, один… Пуск!»

Виталий Егоров (Zelenyikot) , Виталий Юрьевич Егоров

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Научно-популярная литература / Учебная и научная литература / Образование и наука
История Византии
История Византии

Византийская империя. «Второй Рим».Великое государство, колыбель православия, очаг высокой культуры?Тирания, безжалостно управлявшая множеством покоренных народов, давившая в подданных всякий намек на свободомыслие и жажду независимости?Путешественники с восхищением писали о блеске и роскоши «Второго Рима» и с ужасом упоминали о жестокости интриг императорского двора, о многочисленных религиозных и политических распрях, терзавших империю, о феноменально скандальных для Средневековья нравах знатных византийцев…Византийская империя познала и времена богатства и могущества, и дни упадка и разрушения.День, когда Византия перестала существовать, известен точно: 29 мая 1453 года.Так ли это? Что стало причиной падения Византийской империи?Об этом рассказывает в своей уникальной книге сэр Джон Джулиус Норвич.

Джон Джулиус Норвич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература