Позвольте мне объяснить вам, как работает ультразвуковой сканер. Вы ложитесь на кушетку в темной палате. Врач держит в руке датчик, который и позволяет ему видеть все ваши внутренние органы. По размеру этот датчик примерно напоминает небольшой пульт от телевизора. Этот датчик испускает высокочастотные «звуковые» волны, проникающие в ваш организм. Я пишу «звуковые» в кавычках, потому что на самом деле никаких звуков мы не слышим. Частота их выше спектра звуков, которые слышит человеческое ухо. Волны проникают в организм, и их движение зависит от типа волокон, с которыми они сталкиваются, – например, они по-разному реагируют на жир и жидкость и на мышцы и костную ткань. Некоторые волны отталкиваются и возвращаются назад, а другие двигаются дальше, пока не наткнутся на отталкивающие их элементы. Отталкиваясь, волны улавливаются датчиком и передаются дальше, на аппарат.
После этого аппарат анализирует расстояние и интенсивность сигналов и составляет на экране двухмерное изображение. Каждую секунду отправляются и принимаются миллионы ударов и сигналов. Датчик можно перемещать и по-разному поворачивать, чтобы увидеть внутренние органы с разных сторон.
Начало ультразвуковым технологиям было положено в 1790 г., когда итальянский священник и натуралист Ладзаро Спалланцани (1729–1799) описал способности летучих мышей ориентироваться в пространстве при помощи эхолокации. И летучие мыши, и ультразвуковые сканеры действуют по одинаковому принципу: они принимают и создают эхолокационные сигналы. Несмотря на сделанные Спалланцани открытия, ученые обратили на них внимание лишь спустя 100 лет, и во время Первой мировой войны ультразвуковые технологии применялись в морской разведке для поиска вражеских подводных лодок.
В 1930-х и 1940-х гг. ультразвук пришел и в медицину, и способность ультразвуковых волн к нагреванию тканей человеческого организма начали использовать для лечения таких воспалительных процессов, как ревматизм, экзема, язва желудка и геморрой. Со временем малая эффективность подобного лечения стала очевидна, и вместо этого метод стали применять для диагностики.
В 1970-х гг. ультразвук был впервые использован для исследования сердца, и в этой сфере норвежские ученые сыграли важную роль. Норвежский кардиолог Лейк Войе стал в 1972 г. первооткрывателем этого метода в Норвегии, и в последующие годы здесь было проделано несколько важных клинических исследований. В них приняло участие множество врачей, однако ключевой фигурой стала кардиолог Лив Хатле, получившая за свои открытия международное признание[59]
.С тех пор эхокардиография шагнула далеко вперед, а оборудование существенно уменьшилось в размерах и претерпело ряд изменений. Сейчас многие врачи носят в кармане ультразвуковой датчик размером с мобильник. Мало того – существуют датчики величиной всего несколько миллиметров. Их можно присоединить к катетеру, ввести в мелкие коронарные артерии и заснять артерии изнутри. Сейчас ультразвуковым исследованиям, важность которых во всех сферах медицины возрастает, обучают в медицинских вузах, и УЗИ-сканеры стоят в кабинетах многих семейных врачей. Такая популярность вполне объяснима. УЗИ позволяет нам многое узнать о состоянии внутренних органов, но при этом без риска облучения и необходимости использовать контрастную жидкость.
Сегодня эхокардиография применяется во многих государственных и частных клиниках, и эта технология считается совершенной для исследования насосной функции сердца и выявления заболеваний сердечных клапанов. Измеряя площадь участка и скорость движения крови, можно рассчитать разницу давлений внутри сердца.
Существует множество способов количественно оценить насосную функцию сердца, но наиболее распространенным является метод определения так называемой фракции выброса (ФВ). Этот параметр указывает, какая доля содержащейся в желудочке во время диастолы крови выбрасывается из него в систолу. Наибольший интерес для нас представляет фракция выброса левого желудочка (ФВЛЖ): левый желудочек – важнейшая сердечная камера, снабжающая кровью все внутренние органы.