Все эти формулировки могут показаться вам несколько путаными. Они отражают главную слабость частотного подхода: его сторонники подчас идут на всевозможные ухищрения, не желая иметь дело с неопределенностями типа «не знаем». Бозон Хиггса либо существует, либо нет, и невозможность дать определенный ответ объясняется исключительно нехваткой информации. Фреквентист строгих взглядов, по сути, даже не может вынести прямое суждение о вероятности его существования, вот почему специалисты ЦЕРНа так осторожничали (хотя некоторые журналисты и другие непосвященные выражали свои мнения на сей счет куда свободнее).
Непосредственное сравнение двух методов может показать нам, какую путаницу способны породить эти подходы. Возьмем, скажем, проведенные в 1990-х годах весьма противоречивые клинические испытания двух противоинфарктных средств – стрептокиназы и тканевого активатора плазминогена. Вначале частотный анализ приписал «вероятность ошибки» (p) 0,001 исследованию, которое как будто показывало, что после применения нового, более дорогостоящего метода лечения (с помощью тканевого активатора плазминогена) выживаемость больных выше. Иными словами, утверждалось, что если бы уровень смертности для двух препаратов был равным, то уровни смертности, подобные реально наблюдавшимся (или лучше), проявлялись бы лишь в каждом из тысячи последовательных испытаний.
Это не значит, что исследователи были на 99,9 % уверены в том, что новый препарат лучше, хотя подобные сообщения, опять же, часто интерпретируют именно так. Когда другие специалисты заново проанализировали эти испытания, но уже по Байесу, взяв при этом результаты предшествующих клинических тестов как априорные данные, они заключили: «Непосредственная» вероятность того, что новый препарат лучше, составляет лишь около 17 %. «При баейсианском подходе мы напрямую обращаемся к интересующему нас вопросу и говорим, насколько вероятно, что положительный ответ на него истинен, – объясняет Дэвид Шпигельхальтер из Кембриджского университета. – Да и кто не захочет говорить именно об этом?»
У всякого свой любимый конек. Но, может быть, преимущества и недостатки каждого из этих двух подходов как бы побуждают нас задуматься: а не лучше ли как-то скомбинировать элементы обоих? Касс принадлежит к новому племени статистиков, которое как раз этим и занимается. «Для меня статистика – своего рода язык, – говорит он. – Можно свободно владеть французским и английским, спокойно переключаясь с одного на другой в случае необходимости».
Стивен Сенн, специалист по фармацевтической статистике из Люксембургского института здоровья, с ним согласен: «Я использую, так сказать, „смешанную статистику“, в которой отовсюду надергано понемногу. Нередко я работаю как фреквентсит, но оставляю за собой право выполнять байесианский анализ и мыслить по-байесовски».
Касс приводит в пример одно исследование: вместе с коллегами он анализировал характер активации двух сотен нейронов в зрительно-двигательной зоне обезьяньего мозга. Исследования, проводившиеся ранее нейробиологами, дали Кассу и его коллегам предварительную информацию о том, насколько быстро должны активироваться эти нейроны и насколько быстро скорость их активации может изменяться со временем. Эти данные они учли при байесианском анализе, а затем стали оценивать свои результаты при помощи стандартных методов фреквентистов. Байесианские априорные данные позволили «запустить» анализ так, чтобы частотные методы сумели вычленить даже крошечные отличия в океане шумов. Эффективность совместного применения обоих подходов оказалась значительно выше, чем для каждого метода в отдельности.
Иногда байесовские методы и идеи фреквентистов сплетаются столь тесно, что получается нечто новое. В масштабных геномных исследованиях байесовский анализ может использовать тот факт, что эксперимент, где изучается эффект двух тысяч генов, почти эквивалентен двум тысячам параллельных экспериментов, так что этот опыт способен обеспечивать «перекрестное опыление» для разных сегментов анализа: результаты одних становятся априорными данными для других, благодаря чему постепенно улучшается точность выводов частотного анализа.
«Такой подход дает несколько лучшие результаты, – говорит Джефф Лик из Университета Джона Хопкинса (Балтимор, штат Мэриленд). – Он серьезно изменил наш способ анализа геномной информации».
Кроме того, такой подход ломает барьеры. «Каким его назвать – частотным или байесовским? – спрашивает в своем блоге Рифаэль Иризарри, гарвардский биостатистик. – Для прикладной статистики, которой я занимаюсь, это, в общем-то, неважно».
«Удивительный мир» (с) Консорциум Прессы, 1994
Александр Макаров-Кротков , Алексей Буторов , Алексей Вячеславович Буторов , Виктор Прусаков , Михаил Игоревич Костин , Михаил Костин , П. Кресников , Юрий Георгиевич Симаков
Публицистика / Альтернативные науки и научные теории / Прочая научная литература / Образование и наука / Документальное