Если вы решили выверить расчет справедливой стоимости конкретного платежа в IT-системе, то можете столкнуться с ситуацией, когда вы берете ставку, которой оперирует система, применяете к ней формулу (4), а получаемая величина
где
Ставки с непрерывным начислением дают удобство в математических расчетах благодаря использованию экспоненциальной функции и обеспечивают единый подход к оценке и моделированию финансовых инструментов. А это повышает согласованность и точность анализа рисков. Например, в формуле Блэка-Шоулза отражены именно ставки с непрерывным начислением.
В своих расчетах вы можете пользоваться либо ставкой с непрерывным начислением, и тогда применяете формулу (5), либо ставкой с годовым начислением, и тогда применяете формулу (4).
Самый классический класс активов, который есть в любом банке, – облигации. Облигации имеют рыночный и кредитный риски[11]
. Рыночный риск подразделяется на процентный риск и риск изменения кредитного спреда. Рыночный риск можно оценить с помощью расчета VaR тремя путями (здесь мы не будем подробно описывать данные методы):– исходя из цен на облигации (называется Pull Price method),
– с использованием позиций «дюрации и выпуклости», зная которые вам фактически известна чувствительность стоимости облигации к изменению доходностей облигаций на рынке (метод дюрации),
– через показатель VaR по ставкам на разные сроки (метод мэппинга потоков платежей, или Cash Flow Mapping – разложив будущие потоки платежей по срокам, оценив волатильность ставок, смоделировав изменения стоимости и определив VaR как процентиль распределения таких изменений).
Чтобы оценить позицию в облигациях, можно рассчитать дюрацию и выпуклость. Существует два вида дюрации – модифицированная и дюрация Маколея. При этом важно понимать, что дюрацию Маколея нельзя рассчитать для облигаций с плавающей ставкой, поэтому она применяется редко.
Более широкое применение в риск-менеджменте имеет модифицированная дюрация – это чувствительность цены облигации (или портфеля облигаций) к изменению процентной ставки. Она рассчитывается по формуле:
где V – стоимость облигации, y – доходность к погашению. Знак минус применяется намеренно в силу того, что повышение ставки в обычной облигации приводит к снижению ее цены, и чувствительность всегда будет отрицательной. Поэтому ее умножают на –1, чтобы оперировать положительными числами, держа при этом в голове, что эта величина показывает именно процентное снижение цены при повышении ставки.
Более практическая формула следующая:
где
Пример расчета
Номинальная стоимость (Face Value): 1000 рублей
Купонная ставка (Coupon Rate): 5 %
Срок до погашения (Years to Maturity): 5
Доходность к погашению (y): 4 %
Изменение доходности (
Расчет текущей цены облигации (V):
Зная модифицированную дюрацию, можно оценить, на какую величину упадет цена облигации, если доходность по ней повысится на какую-то величину. Если размышлять в терминах процентных изменений цены, то при увеличении доходности на
Формула денежного изменения цены облигации:
где