Доказательство теоремы опирается на некоторые предположения: одно относится к математическим пространствам, связанным с квантовыми полями, в другом заявляется согласованность со специальной теорией относительности; кроме того, имеется условие положительности энергии. Это важное условие: при наличии состояний с отрицательной энергией частицы не смогли бы противостоять искушению разрушить мир, переходя в них{117}
. Теорему можно поэтому понимать примерно так: для того чтобы мир был устроен в целом нормально, волновая функция частиц с полуцелым спиномРоли, которые играют бозоны и фермионы, в природе разделены. Все частицы/поля, служащие переносчиками взаимодействия («курьерами») – это коллективисты-бозоны. А «отправители» и «получатели», из которых сложена материя, – фермионы. Такое положение дел не предписано квантовой теорией поля напрямую, но оно имеет место в этой Вселенной. К фермионам относятся кварки и электроны (из которых сложено все вокруг нас и мы сами), более массивные родственники электронов – мюоны и тау, – а также нейтрино; фермионами по необходимости получаются и составленные из трех кварков протоны и нейтроны.
Сложенный из фермионов мир оказывается разнообразным из-за принципа Паули, который не позволяет фермионам, собранным вместе, находиться в одном и том же квантовом состоянии. Электроны в атомах не могут устраиваться в состояниях с более низкими энергиями, если те уже заняты другими электронами, а вынуждены селиться все «выше» по энергии, и поэтому по мере движения по клеткам таблицы Менделеева элементы демонстрируют меняющиеся химические свойства. Кое в чем похожая картина имеет место и для атомных ядер.
Однако полное придание осмысленности и бозонным (целые спины), и фермионным (полуцелые) квантовым полям было достигнуто далеко не сразу. Для начала проявила себя проблема нулевых колебаний: в вакуумном состоянии поля прячется неустранимая «остаточная» энергия колебательных систем. Неприятность тут в том, что эта энергия бесконечно велика по той простой причине, что в любом поле колебательных систем бесконечно много и каждая дает свой вклад.
«На полпути» к квантовой теории поля с той же проблемой столкнулся и Дирак: энергия моря электронов с отрицательной энергией неминуемо получалась бесконечной, и единственная надежда на осмысленность состояла в том, чтобы
Изменение математических правил, даже если оно допустимо само по себе, может, конечно, увести прочь от описываемых физических явлений, но, судя по всему, сговор математики и физики так просто не разрушить. Несмотря на математическую эквилибристику, квантовая теория поля остается (а может быть, благодаря этой математической эквилибристике становится) адекватным описанием физического мира. Но здесь понадобилась неординарная изобретательность, потому что относительно безобидное избавление от бесконечной энергии вакуума было только началом.
Существенно более напряженный оборот дело приняло при описании взаимодействий полей. Проблема здесь – в сверхизобилии возможностей. Например, чтобы два электрона электрически отталкивались, им нужно «разговаривать» друг с другом; «языком», как уже говорилось, служит обмен фотонами. Но беда в том, что «слова» в этом языке «сами говорят» – производя новые слова, которые запутываются с другими в невероятно сложное многоголосие.
Вот что происходит. Каждый фотон, которым обмениваются два электрона, переносит между ними энергию и импульс, но в каком именно количестве, никак не фиксировано. Квантовая механика – ожидаемым образом! – предписывает сложить вклады всех возможностей{119}
.