Читаем Сто лет недосказанности: Квантовая механика для всех в 25 эссе полностью

Доказательство теоремы опирается на некоторые предположения: одно относится к математическим пространствам, связанным с квантовыми полями, в другом заявляется согласованность со специальной теорией относительности; кроме того, имеется условие положительности энергии. Это важное условие: при наличии состояний с отрицательной энергией частицы не смогли бы противостоять искушению разрушить мир, переходя в них{117}. Теорему можно поэтому понимать примерно так: для того чтобы мир был устроен в целом нормально, волновая функция частиц с полуцелым спином должна приобретать лишний минус при перестановке{118}.

Роли, которые играют бозоны и фермионы, в природе разделены. Все частицы/поля, служащие переносчиками взаимодействия («курьерами») – это коллективисты-бозоны. А «отправители» и «получатели», из которых сложена материя, – фермионы. Такое положение дел не предписано квантовой теорией поля напрямую, но оно имеет место в этой Вселенной. К фермионам относятся кварки и электроны (из которых сложено все вокруг нас и мы сами), более массивные родственники электронов – мюоны и тау, – а также нейтрино; фермионами по необходимости получаются и составленные из трех кварков протоны и нейтроны.

Сложенный из фермионов мир оказывается разнообразным из-за принципа Паули, который не позволяет фермионам, собранным вместе, находиться в одном и том же квантовом состоянии. Электроны в атомах не могут устраиваться в состояниях с более низкими энергиями, если те уже заняты другими электронами, а вынуждены селиться все «выше» по энергии, и поэтому по мере движения по клеткам таблицы Менделеева элементы демонстрируют меняющиеся химические свойства. Кое в чем похожая картина имеет место и для атомных ядер.

Однако полное придание осмысленности и бозонным (целые спины), и фермионным (полуцелые) квантовым полям было достигнуто далеко не сразу. Для начала проявила себя проблема нулевых колебаний: в вакуумном состоянии поля прячется неустранимая «остаточная» энергия колебательных систем. Неприятность тут в том, что эта энергия бесконечно велика по той простой причине, что в любом поле колебательных систем бесконечно много и каждая дает свой вклад.

«На полпути» к квантовой теории поля с той же проблемой столкнулся и Дирак: энергия моря электронов с отрицательной энергией неминуемо получалась бесконечной, и единственная надежда на осмысленность состояла в том, чтобы считать эту энергию ненаблюдаемой – находя опору в том обстоятельстве, что важны только различия в энергиях между состояниями. В квантовой теории поля удалось изгнать бессмысленную бесконечно большую энергию вакуума похожим образом, но «с соблюдением приличий»: не без некоторого изящества модифицировав математические правила обращения с квантовыми колебательными системами – а именно, со стоящими за ними операциями рождения и уничтожения.

Изменение математических правил, даже если оно допустимо само по себе, может, конечно, увести прочь от описываемых физических явлений, но, судя по всему, сговор математики и физики так просто не разрушить. Несмотря на математическую эквилибристику, квантовая теория поля остается (а может быть, благодаря этой математической эквилибристике становится) адекватным описанием физического мира. Но здесь понадобилась неординарная изобретательность, потому что относительно безобидное избавление от бесконечной энергии вакуума было только началом.

Существенно более напряженный оборот дело приняло при описании взаимодействий полей. Проблема здесь – в сверхизобилии возможностей. Например, чтобы два электрона электрически отталкивались, им нужно «разговаривать» друг с другом; «языком», как уже говорилось, служит обмен фотонами. Но беда в том, что «слова» в этом языке «сами говорят» – производя новые слова, которые запутываются с другими в невероятно сложное многоголосие.

Вот что происходит. Каждый фотон, которым обмениваются два электрона, переносит между ними энергию и импульс, но в каком именно количестве, никак не фиксировано. Квантовая механика – ожидаемым образом! – предписывает сложить вклады всех возможностей{119}. Вклады эти – в величину, которая очень похожа на волновую функцию и которую я временно назову предвероятностью: ее квадрат дает собственно вероятность. Предвероятность чего именно? Если, например, нам интересно узнать, как электроны «повернут» в результате взаимодействия, мы начинаем с электронов с заданными импульсами, направленными хотя бы отчасти навстречу друг другу, и интересуемся предвероятностями, с которыми они получат определенные импульсы при разлете.

Перейти на страницу:

Похожие книги

Что? Где? Когда?
Что? Где? Когда?

Книга известных игроков телевизионных клубов «Что? Где? Когда?» и «Брэйн ринг», членов Международной ассоциации клубов «Что? Где? Когда?» популяризирует интеллектуальные игры как эффективный способ занятия досуга и развития творческих способностей людей всех возрастов.Авторы раскрывают секреты составления вопросов, знакомят с методикой тренировки интеллектуальных способностей, делятся богатым опытом проведения турниров команд «Что? Где? Когда?» и «Брэйн ринг».В сборнике приведены вопросные материалы турниров, организованных московскими клубами «Что? Где? Когда?» в сезоны 1997-1999 гг.

Владимир Григорьевич Белкин , Евгений Венедиктович Алексеев , Ирина Константиновна Тюрикова , Максим Оскарович Поташев , Наиля Адилевна Курмашева

Научная литература / Прочая научная литература / Образование и наука
Достучаться до небес. Научный взгляд на устройство Вселенной
Достучаться до небес. Научный взгляд на устройство Вселенной

Человечество стоит на пороге нового понимания мира и своего места во Вселенной - считает авторитетный американский ученый, профессор физики Гарвардского университета Лиза Рэндалл, и приглашает нас в увлекательное путешествие по просторам истории научных открытий. Особое место в книге отведено новейшим и самым значимым разработкам в физике элементарных частиц; обстоятельствам создания и принципам действия Большого адронного коллайдера, к которому приковано внимание всего мира; дискуссии между конкурирующими точками зрения на место человека в универсуме. Содержательный и вместе с тем доходчивый рассказ знакомит читателя со свежими научными идеями и достижениями, шаг за шагом приближающими человека к пониманию устройства мироздания.

Лиза Рэндалл

Научная литература