Читаем Сто лет недосказанности: Квантовая механика для всех в 25 эссе полностью

Дирак решил обобщить эти свойства на случай пространства-времени. Хотя пространство-время – до некоторой степени математическая конструкция (мы-то сами живем в пространстве и ощущаем ход времени), в математике нет причин, мешающих построить объекты, столь же чуткие к поворотам в четырехмерном пространстве-времени. Для них потребовалось новое абстрактное пространство, которое по совпадению оказалось тоже четырехмерным. Это означало не две, а четыре компоненты волновой функции электрона, что с самого начала было несколько необычно, но иначе математика «не сходилась».

Ключевой момент здесь в том, что «повороты» в пространстве-времени включают в себя те самые пересчеты между картинами мира движущихся наблюдателей, которые перемешивают пространство и время, и поэтому хорошее поведение при таких поворотах обеспечивает согласованность со специальной теорией относительности. «Волшебная стрелка» в пространстве-времени, на повороты которой готовы были откликаться новые объекты, уже не изображала магнит, как в трехмерном пространстве, а стала чисто математической, но это никого не смущало – Дирака во всяком случае. Он смело согласился с тем, чего хотела математика: решил, что волновая функция будет составлена из четырех компонент, и при перемешиваниях пространства и времени они будут изменяться так, как говорит им живущая в пространстве-времени «воображаемая стрелка». Для них и удалось сформулировать уравнение со всеми желаемыми свойствами – ставшее известным как уравнение Дирака{105}.

Уравнение Дирака оказывается согласованным со специальной теорией относительности, если при пересчете между картинами мира движущихся наблюдателей не только перемешивать пространство и время, но и переставлять и комбинировать между собой компоненты волновой функции так, как велит это делать математика четырехмерных поворотов и отвечающих им спиноров.

Дирак в некотором роде доверился красоте математики, но успех в приложении к физическому миру последовал колоссальный: из нового уравнения автоматически получилось «удвоение силы магнита» для спина электрона – удвоение, которое Паули вынужден был использовать без объяснений (см. главу 9). Но это было далеко не все! Рассмотрев следствия из своего уравнения для атома водорода, Дирак нашел уточнения для разрешенных значений энергии по сравнению с теми, которые следовали из уравнения Шрёдингера после того, как Паули внедрил туда спин. Хотя и небольшие по величине, они улучшали совпадение между теоретическим результатом и экспериментальными данными, и это без сомнения свидетельствовало в пользу новоиспеченного уравнения (как мы помним, первоначально главным аргументом в пользу уравнения Шрёдингера тоже было вычисление разрешенных значений энергии в атоме водорода).

Но дальнейшая интрига развивалась по известному закону некоторых популярных жанров, где герой не добивается полного успеха с первой попытки, несмотря на то что поначалу все у него идет на удивление гладко; если это настоящий герой, ему предстоит пройти через кризис, когда рушится буквально все. Четырех компонент волновой функции, необходимых для записи уравнения, согласованного с теорией относительности, было ровно в два раза больше, чем нужно для описания электрона. Две из них работали, как было сказано, превосходно. На две другие можно было не обращать большого внимания в задачах типа атома водорода и в ряде других задач до тех пор, пока энергия описываемых ими электронов была достаточно мала: эти «непонятные» компоненты оказывались тогда несущественными. Но так было не во всех случаях.

Дело в том, что среди следствий специальной теории относительности имеется еще и формула Эйнштейна E = mc2: энергия покоящегося тела с массой m равна этой массе, умноженной на квадрат скорости света (в наши дни эта последовательность символов стала мемом). Уравнение Дирака «знало» об этой формуле – раз оно оказалось согласованным с требованиями теории относительности, математика обеспечивала появление этих эм-цэ-квадрат в нужных местах; в частности, «малые» энергии электронов, при которых две лишние компоненты волновой функции несущественны, означают энергию их движения, малую по сравнению с энергией mc2 (где масса m – это, конечно, масса электрона). При таких условиях Дирак и получил впечатляющие результаты для электрона в атоме. Однако полностью избавиться от двух «лишних» компонент было невозможно – само уравнение препятствовало этому.

Да и по принципиальным причинам систематически игнорировать их было нельзя, потому что если какая-то идея или уравнение претендует на описание мира, то решительно невозможно рассматривать только нравящиеся нам следствия из этой идеи или уравнения, забывая про все те, которые противоречат наблюдениям. Но «зачем» появились лишние компоненты? Противоречат ли они наблюдениям? И какой в них смысл?

Перейти на страницу:

Похожие книги

Что? Где? Когда?
Что? Где? Когда?

Книга известных игроков телевизионных клубов «Что? Где? Когда?» и «Брэйн ринг», членов Международной ассоциации клубов «Что? Где? Когда?» популяризирует интеллектуальные игры как эффективный способ занятия досуга и развития творческих способностей людей всех возрастов.Авторы раскрывают секреты составления вопросов, знакомят с методикой тренировки интеллектуальных способностей, делятся богатым опытом проведения турниров команд «Что? Где? Когда?» и «Брэйн ринг».В сборнике приведены вопросные материалы турниров, организованных московскими клубами «Что? Где? Когда?» в сезоны 1997-1999 гг.

Владимир Григорьевич Белкин , Евгений Венедиктович Алексеев , Ирина Константиновна Тюрикова , Максим Оскарович Поташев , Наиля Адилевна Курмашева

Научная литература / Прочая научная литература / Образование и наука
Достучаться до небес. Научный взгляд на устройство Вселенной
Достучаться до небес. Научный взгляд на устройство Вселенной

Человечество стоит на пороге нового понимания мира и своего места во Вселенной - считает авторитетный американский ученый, профессор физики Гарвардского университета Лиза Рэндалл, и приглашает нас в увлекательное путешествие по просторам истории научных открытий. Особое место в книге отведено новейшим и самым значимым разработкам в физике элементарных частиц; обстоятельствам создания и принципам действия Большого адронного коллайдера, к которому приковано внимание всего мира; дискуссии между конкурирующими точками зрения на место человека в универсуме. Содержательный и вместе с тем доходчивый рассказ знакомит читателя со свежими научными идеями и достижениями, шаг за шагом приближающими человека к пониманию устройства мироздания.

Лиза Рэндалл

Научная литература