Читаем Сто лет недосказанности: Квантовая механика для всех в 25 эссе полностью

Если действительно какой-то из «морских» электронов с отрицательной энергией получит откуда-нибудь к этой своей энергии прибавку колоссального размера 2mc2, то он выберется из моря и окажется электроном с приличествующей ему положительной энергией. Но там, откуда он ушел, станет на один отрицательный заряд меньше – что на фоне моря будет восприниматься как появление положительного заряда. Аналогична картина и с массой/энергией: уход из моря электрона с отрицательной массой оставляет там дырку, которую можно воспринимать как частицу с положительной массой. В результате дело выглядит так, что полученная энергия 2mc2 пошла на создание пары частиц: электрона с отрицательным зарядом и еще одной частицы с положительным зарядом, но с такой же массой, как у электрона! И парадокс Клейна получает объяснение: когда электрон налетает на энергетическую стенку высоты, превосходящей 2mc2, очень сильное электрическое поле, требуемое для ее создания, порождает такие пары: «лишние» электроны выскакивают из моря, а необходимую для этого энергию берут у поля.

Если все это выглядело хотя бы отчасти правдоподобным, труднопреодолимая проблема состояла в том, что единственными известными в то время носителями элементарного положительного заряда были протоны. Другого варианта объяснить, как «дырки» могли бы проявляться, в природе просто не было, однако здесь не могло не бросаться в глаза различие в массах: масса протона больше массы электрона почти в две тысячи раз. Дирак приложил усилия, чтобы показать, каким образом взаимодействие с (бесконечным) количеством электронов из моря могло бы привести к такому различию между массой частицы и дырки. Он ограничился малыми по сравнению с эм-цэ-квадрат энергиями (т. е. фактически пренебрег требованиями теории относительности), признав, однако, что над развитием высказанных им идей надо еще поработать. Тогда к обсуждению подключился Вейль – математическая фигура мирового масштаба. Он показал, что нарушить условие равенства масс между частицами и дырками невозможно по глубоким математическим причинам. Таким образом, из предложения Дирака ничего не вышло. Сам Вейль сделал отсюда вывод, что от теории «дырок в море» следует отказаться!

Веские аргументы против интерпретации дырок как протонов привел и Оппенгеймер, заметив, что если бы дело обстояло таким образом, то атом водорода быстро бы «самоуничтожился». На протяжении нескольких лет изобретение Дирака, несмотря на имевшиеся достижения, выглядело отчасти курьезным. В конце концов, в 1931 г., реакцией Дирака на возражения Вейля и Оппенгеймера стало решительное движение вперед, туда, куда вела логика формул.

Если дырка не похожа ни на что известное, то, значит, известно не все. «На бумаге» впервые появилась новая частица: «дырка» была объявлена антиэлектроном.

При его встрече с электроном происходит то самое, чего все боялись, но теперь не как массовое, а как единичное явление: электрон с положительной энергией отдает избыток энергии и заполняет дырку. Однако на фоне моря картина выглядит иначе: обычный электрон со своим обычным отрицательным зарядом и другая частица той же массы, но с положительным зарядом исчезают, а вместо них появляются фотоны, несущие энергию 2mc2.

Такой процесс в наше время хорошо известен как аннигиляция. И сейчас, говоря о ней, сразу добавляют, что аннигилируют частица материи и встречающаяся с ней частица антиматерии – ее античастица. Но вся идея античастиц и аннигиляции – вообще вся концепция антиматерии – выросла не из экспериментальных открытий, а из уравнения Дирака. Это уравнение неожиданно открыло вторую половину мира.

24

Что в поле


На упрек, что в игре ему часто просто везет, один известный гольфист однажды ответил: «Возможно. Но, знаете ли, я заметил, что чем лучше я играю, тем больше мне везет». Можно ли сказать, что Дираку «повезло»? Для решения задачи – написать релятивистское уравнение для электрона – известных средств не хватало, и он на свой страх и риск взялся придумывать новые. Но из новаторского по форме уравнения следовали и «хорошие», и «плохие» выводы. Обычно наличие «плохих» (конфликтующих с наблюдениями) приводит к закрытию всего проекта; «хороших» немного жаль, но что поделаешь – идея, значит, оказалась неверной, приходится признать поражение. Дираковский проект находился на грани закрытия из-за отрицательных энергий: если у электронов есть возможность «упасть» в состояния с такими энергиями, мир должен немедленно разрушиться.

Дирак обратил это почти поражение в победу, выдвинув почти абсурдную идею о заполненном, но ненаблюдаемом море электронов с отрицательной энергией. В числе наблюдаемых выводов отсюда оказались дырки – случаи недостачи электронов с отрицательной энергией, воспринимаемые как частицы с положительной энергией (и положительным зарядом). Придуманный таким образом антиэлектрон получил отдельное название: позитрон (от слова positive, что указывает на его положительный заряд).

Перейти на страницу:

Похожие книги

Что? Где? Когда?
Что? Где? Когда?

Книга известных игроков телевизионных клубов «Что? Где? Когда?» и «Брэйн ринг», членов Международной ассоциации клубов «Что? Где? Когда?» популяризирует интеллектуальные игры как эффективный способ занятия досуга и развития творческих способностей людей всех возрастов.Авторы раскрывают секреты составления вопросов, знакомят с методикой тренировки интеллектуальных способностей, делятся богатым опытом проведения турниров команд «Что? Где? Когда?» и «Брэйн ринг».В сборнике приведены вопросные материалы турниров, организованных московскими клубами «Что? Где? Когда?» в сезоны 1997-1999 гг.

Владимир Григорьевич Белкин , Евгений Венедиктович Алексеев , Ирина Константиновна Тюрикова , Максим Оскарович Поташев , Наиля Адилевна Курмашева

Научная литература / Прочая научная литература / Образование и наука
Достучаться до небес. Научный взгляд на устройство Вселенной
Достучаться до небес. Научный взгляд на устройство Вселенной

Человечество стоит на пороге нового понимания мира и своего места во Вселенной - считает авторитетный американский ученый, профессор физики Гарвардского университета Лиза Рэндалл, и приглашает нас в увлекательное путешествие по просторам истории научных открытий. Особое место в книге отведено новейшим и самым значимым разработкам в физике элементарных частиц; обстоятельствам создания и принципам действия Большого адронного коллайдера, к которому приковано внимание всего мира; дискуссии между конкурирующими точками зрения на место человека в универсуме. Содержательный и вместе с тем доходчивый рассказ знакомит читателя со свежими научными идеями и достижениями, шаг за шагом приближающими человека к пониманию устройства мироздания.

Лиза Рэндалл

Научная литература