В таком представлении правил наилучших ответов чистые стратегии — особые случаи, соответствующие предельным значениям переменных
С помощью метода, примененного нами в разделе 2.А
для поиска защищенного от использования значенияВ действительности, чтобы найти равновесие в смешанных стратегиях в игре с нулевой суммой, каждый участник которой располагает двумя чистыми стратегиями, не нужно проходить весь процесс определения правил наилучших ответов, построения соответствующих графиков и поиска точки их пересечения. Вы можете просто записать уравнения защищенности от использования из раздела 2.А
по комбинации каждого игрока, а затем решить их. Если в полученном решении обе вероятности попадают в диапазон от 0 до 1, вы нашли то, что нужно. Если одна из вероятностей имеет отрицательное значение или значение больше 1, значит, в данной игре нет равновесия в смешанных стратегиях и вам необходимо снова поискать его в чистых стратегиях. В разделе 6 и разделе 7 представлен анализ методов решения игр, участники которых имеют более двух чистых стратегий.3. Равновесие Нэша как система убеждений и ответов
При одновременном выполнении ходов ни один из игроков не может отреагировать на фактический выбор другого игрока. Вместо этого каждый участник игры предпринимает свое наилучшее действие, исходя из представлений о том, какой именно ход выбирает в данный момент соперник. В главе 4
мы назвали такие представления убеждениями игрока относительно выбора стратегии другим игроком, затем интерпретировали равновесие Нэша как конфигурацию стратегий, при которой эти убеждения верны, а значит, каждый игрок выбирает свой наилучший ответ на фактические действия другого игрока. Эта концепция оказалась весьма полезной для понимания структуры и исхода многих важных типов игр, особенно таких, как дилемма заключенных, координационные игры и игра в труса.Однако в главе 4
мы рассматривали исключительно равновесия Нэша в чистых стратегиях. По этой причине осталось почти незамеченным одно скрытое предположение: каждый игрок твердо убежден, что другой игрок выберет определенную чистую стратегию. Теперь, когда мы анализируем более общие смешанные стратегии, концепция убеждения требует новой интерпретации.Порой игроки не уверены в предполагаемых действиях других участников игры. Так, в координационной игре из главы 4
, в которой Гарри хочет встретиться с Салли, Гарри не уверен в том, куда отправится Салли — в Starbucks или Local Latte, и его убеждение может сводиться к тому, что она окажется в любом из этих кафе с вероятностью 50 на 50. А в примере с игрой в теннис Эверт могла осознавать, что Навратилова пытается держать ее в неведении, а значит, она (Эверт) не может быть уверена в том, какое из доступных действий выберет Навратилова. В разделе 4 главы 2 мы обозначили такую ситуацию термином «стратегическая неопределенность», а в главе 4 указали, что такая неопределенность приводит к формированию равновесий в смешанных стратегиях. Теперь же рассмотрим эту идею более подробно.Однако важно различать неуверенность и неправильные убеждения. Скажем, в примере с игрой в теннис Навратилова не может быть уверена в том, что выберет Эверт в каждом конкретном случае. Тем не менее у нее могут быть правильные убеждения относительно комбинации стратегий Эверт, а именно вероятности, с которой она выбирает между своими двумя чистыми стратегиями. Наличие правильных убеждений по поводу смешанных действий означает знание, или вычисление, или догадки в отношении правильных вероятностей, с которыми другой игрок делает выбор между своими базовыми или чистыми стратегиями. Что касается равновесия в нашем примере, оказалось, что равновесная комбинация стратегий Эверт составила 70 % для ПЛ и 30 % для ПД. Если Навратилова убеждена в том, что Эверт выберет ПЛ с вероятностью 70 % и ПД с вероятностью 30 %, то ее убеждения в данном равновесии будут правильными, хотя и неопределенными.