С учетом этой неопределенности Салли может вычислить ожидаемые выигрыши от своих действий, предпринятых на основании убежденности в отношении р
-комбинации Гарри. Если Салли выберет Starbucks, это даст ей 1 × p + 0 × (1 — p) = p, если Local Latte, это даст 0 × p + 2 × (1 — p) = 2 × (1 — p). Когда p имеет высокое значение, p > 2(1 — p), то есть Салли достаточно уверена в том, что Гарри отправится в Starbucks, ей лучше пойти туда же. Точно так же, когда p имеет низкое значение, p < 2(1 — p), а значит, Салли достаточно уверена в том, что Гарри отправится в Local Latte, ей тоже нужно пойти в это кафе. При p = 2(1 — p), или 3p = 2, или p = 2/3 эти два варианта выбора обеспечивают Салли один и тот же выигрыш. Следовательно, если она убеждена в том, что p = 2/3, она может быть не уверена в собственном выборе и колебаться между этими двумя вариантами.Понимание этого факта может вызвать у Гарри неуверенность в выборе Салли. Следовательно, Гарри также испытывает субъективную стратегическую неопределенность. Предположим, он считает, что Салли выберет Starbucks с вероятностью q
, а Local Latte с вероятностью (1 — q). Аналогичные рассуждения показывают, что Гарри следует выбрать Starbucks, если q > 2/3, и Local Latte, если q < 2/3. В случае если q = 2/3, ему будет безразлично, какое из этих двух действий предпринять, и у него возникнет неуверенность в собственном выборе.Теперь у нас есть основа для равновесия в смешанных стратегиях с p
= 2/3 и q = 2/3. При таком равновесии данные значения p и q одновременно являются и фактическими вероятностями чистых стратегий, входящих в соответствующую смешанную стратегию, и субъективными убеждениями каждого игрока относительно вероятностей чистых стратегий в смешанной стратегии другого игрока. Правильность этих убеждений поддерживает собственное безразличие каждого игрока в отношении выбора между двумя чистыми стратегиями, а значит, и готовность каждого смешать их. Это полностью соответствует концепции равновесия Нэша как системы самоисполняющихся убеждений и ответных действий, описанной в разделе 3.Ключ к поиску равновесия в смешанных стратегиях состоит в том, что Салли готова смешать две чистые стратегии только тогда, когда ее субъективная неопределенность в отношении выбора Гарри правильна, то есть если правильно значение р
в р-комбинации Гарри. Алгебраически это утверждение можно обосновать посредством вычисления равновесного значения р с помощью уравнения р = 2(1 — р), которое гарантирует, что Салли получит такой же ожидаемый выигрыш от двух своих чистых стратегий при сопоставлении каждой из них с р-комбинацией Гарри. Если данное равенство справедливо в случае равновесия, вероятности чистых стратегий в смешанной стратегии Гарри как будто поддерживают безразличие Салли. Мы особо подчеркиваем сочетание «как будто», поскольку в этой игре у Гарри нет причин поддерживать безразличие Салли, поэтому полученный результат — просто свойство данного равновесия. Тем не менее общая идея такова: в равновесии Нэша в смешанных стратегиях вероятности чистых стратегий, входящих в смешанную стратегию каждого игрока, поддерживают безразличие другого игрока в отношении выбора между его чистыми стратегиями. Мы вывели свойство безразличия соперника выше в ходе обсуждения игр с нулевой суммой, а теперь видим, что оно актуально и для игр с ненулевой суммой.Однако в игре в доверие равновесие в смешанных стратегиях имеет ряд весьма нежелательных свойств. Во-первых, оно обеспечивает обоим игрокам достаточно низкие ожидаемые выигрыши. Формулы расчета ожидаемых выигрышей Салли от двух ее действий, р
и 2 (1 — р), в обоих случаях равны 2/3 при р = 2/3. Точно так же ожидаемые выигрыши Гарри в случае равновесной q-комбинации Салли при q = 2/3 также одинаковы и составляют 2/3. Следовательно, при равновесии в смешанных стратегиях каждый игрок получает выигрыш 2/3. В главе 4 мы нашли в этой игре два равновесия в чистых стратегиях, причем даже худшее из них (оба выбирают Starbucks) обеспечивает каждому игроку выигрыш 1, а лучшее (оба выбирают Local Latte) — выигрыш 2.Причина, по которой в случае равновесия в смешанных стратегиях два игрока получают такие плохие результаты, состоит в следующем: при выборе игроками своих действий независимо и бессистемно достаточно высока вероятность того, что они отправятся в разные места и в результате не встретятся и оба получат выигрыш 0. Гарри и Салли не увидятся, если один из них пойдет в Starbucks, а другой в Local Latte или наоборот. Вероятность такого развития событий при использовании обоими равновесных комбинаций составляет 2 × (2/3) × (1/3) = 4/9[93]
. Аналогичная проблема наблюдается в равновесиях в смешанных стратегиях в большинстве игр с ненулевой суммой.