Такие смешанные стратегии охватывают целый диапазон непрерывных значений. На одном его конце вариант ПЛ может быть выбран с вероятностью 1 (гарантированно), тогда как вариант ПД не будет выбран никогда (вероятность 0); эта комбинация представляет собой чистую стратегию ПЛ. На другом конце диапазона вариант ПЛ может быть выбран с вероятностью 0, а ПД — с вероятностью 1; данная комбинация представляет собой чистую стратегию ПД. В промежутке между ними находится целое множество возможностей: ПЛ выбирается с вероятностью 75 % (0,75), а ПД — 25 % (0,25); или оба варианта выбираются с вероятностью 50 % (0,5) каждый; или вариант ПЛ выбирается с вероятностью 1/3 (33,33…%), а ПД — 2/3 (66,66…%) и т. д.[89]
Выигрыши, полученные в результате применения смешанной стратегии, определяются как соответствующие значения взвешенного по вероятности среднего выигрышей от чистых стратегий, входящих в состав данной смешанной стратегии. Например, в игре в теннис из раздела 7 главы 4
(против стратегии ПЛ Навратиловой) выигрыш Эверт от стратегии ПЛ равен 50, а от стратегии ПД 90. Следовательно, ее выигрыш от смешанной стратегии (0,75 ПЛ, 0,25 ПД) в игре против стратегии ПЛ Навратиловой составит 0,75 × 50 + 0,25 × 90 = 37,5 + 22,5 = 60. Это и есть ожидаемый выигрыш Эверт от данной смешанной стратегии[90].Вероятность выбора той или иной чистой стратегии — это непрерывная переменная с диапазоном значений от 0 до 1. Стало быть, смешанные стратегии — просто особый тип непрерывно меняющихся стратегий наподобие тех, которые мы изучали в главе 5
. Каждая чистая стратегия — это предельный частный случай, в котором вероятность ее выбора равна 1.Понятие равновесия Нэша также можно расширить, включив в него смешанные стратегии. Равновесие Нэша определяется как совокупность стратегий (по одной на каждого игрока), при которой выбор каждого игрока для него наилучший с точки зрения обеспечения его максимального ожидаемого выигрыша с учетом смешанных стратегий других игроков. Допустимость использования в игре смешанных стратегий автоматически и практически полностью решает проблему возможного отсутствия равновесия Нэша, с которой мы столкнулись в случае чистых стратегий. Знаменитая теорема Нэша показывает, что при самых общих условиях (достаточно широких, чтобы охватывать все игры, рассматриваемые в данной книге, и многие другие) равновесие Нэша в смешанных стратегиях существует всегда.
Таким образом, на самом обобщенном уровне включение смешанных стратегий в наш анализ не подразумевает ничего выходящего за пределы общей теории непрерывных стратегий, сформулированной в главе 5
. Тем не менее частный случай смешанных стратегий действительно поднимает ряд особых концептуальных и методологических вопросов, поэтому заслуживает специального изучения.2. Смешивание ходов
Начнем с примера игры в теннис из раздела 7 главы 4
, в которой не было равновесия Нэша в чистых стратегиях, и покажем, как расширение этой концепции на смешанные стратегии позволяет устранить данный недостаток, а также объясним полученное в итоге равновесие как равновесие, при котором каждый игрок держит соперника в неведении.На рис. 7.1 воспроизведена матрица выигрышей, представленная на рис. 4.14
. В этой игре, если Эверт будет всегда выбирать удар по линии (ПЛ), Навратилова будет прикрывать ПЛ и удерживать выигрыш Эверт на уровне 50. Точно так же, если Эверт будет всегда выбирать удар по диагонали (ПД), Навратилова будет удерживать выигрыш Эверт на уровне 20. Если Эверт может выбирать только одну из двух базовых (чистых) стратегий, а Навратилова — спрогнозировать ее выбор, то более подходящая (или менее неподходящая) стратегия Эверт — ПЛ, обеспечивающая ей выигрыш 50.Рис. 7.1.
Отсутствие равновесия в чистых стратегияхНо допустим, Эверт не ограничена выбором только чистых стратегий и может применить смешанную стратегию, возможно, именно ту, в соответствии с которой вероятность того, что она выберет ПЛ в каком бы то ни было случае, составляет 75 %, или 0,75, что означает, что вероятность того, что она выберет ПД, равна 25 %, или 0,25. С помощью метода, представленного в разделе 1
, можно рассчитать ожидаемый выигрыш Навратиловой при выборе Эверт такой комбинации стратегий. Он составляет:0,75 × 50 + 0,25 × 10 = 37,5 + 2,5 = 40, если она прикроет ПЛ,
0,75 × 20 + 0,25 × 80 = 15 + 20 = 35, если она прикроет ПД.
Если Эверт выберет комбинацию стратегий 75 на 25, ожидаемые выигрыши показывают, что Навратилова может использовать эту комбинацию с максимальной выгодой для себя, прикрыв удар ПЛ.
Когда Навратилова выбирает ПЛ, чтобы наилучшим образом использовать комбинацию Эверт 75 на 25, это наносит Эверт ущерб, поскольку перед нами игра с нулевой суммой. Ожидаемые выигрыши Эверт составляют: