Читаем Стратегические игры полностью

U5. Рассмотрим отрасль по производству колы, в которой Coke и Pepsi — две ведущие компании (для простоты анализа просто забудем об остальных). Объем рынка составляет 8 миллиардов долларов. Каждая компания решает, рекламировать ли ей свою продукцию; если да, то реклама обойдется в 1 миллиард долларов. Если одна компания будет размещать рекламу, а другая нет, то первая компания захватит весь рынок. Если обе компании будут рекламировать свою продукцию, они разделят рынок поровну и понесут расходы на рекламу. Если обе компании не будут размещать рекламу, они разделят рынок поровну без расходов на рекламу.

a) Составьте таблицу выигрышей для этой игры и найдите равновесие в случае, если обе компании ходят одновременно.

b) Постройте дерево игры исходя их предположения, что ходы в ней выполняются последовательно: первой ходит Coke, а затем Pepsi.

c) Будет ли любое из равновесий, найденных в пунктах а и b, более выгодным по сравнению с общей перспективой для Coke и Pepsi? Как обе компании могли бы добиться большего?

U6. На участке вдоль пляжа отдыхают 500 детей, разделенных на пять кластеров, по 100 детей в каждом. (Обозначим их А, Б, В, Г, Д.) Два торговца мороженым одновременно решают, где разместить свои торговые точки по его продаже. Они должны выбрать точное местоположение одного из кластеров.

Если в одном кластере есть один торговец, мороженое купят все 100 детей, входящие в состав этого кластера. Для кластеров без торговца мороженым 50 из 100 детей захотят пойти к торговой точке, находящейся на расстоянии в один кластер, 20 детей захотят пойти к точке, расположенной на расстоянии в два кластера, и никто не пожелает преодолевать ради мороженого расстояние в три и более кластеров. Мороженое быстро тает, поэтому дети, которые все же отправятся за ним, не смогут купить его и для тех, кто остался на месте.

Если оба торговца мороженым выберут один и тот же кластер, каждый получит 50 процентов доли от общего спроса на мороженое. Если они предпочтут разные кластеры, то те дети (остающиеся на месте или ушедшие за мороженым), к которым один торговец находится ближе, чем к другим, отправятся к нему, а дети, находящиеся на равном расстоянии от двух торговцев, разделятся между ними поровну. Каждый торговец стремится максимально увеличить объем продаж.

a) Составьте таблицу выигрышей пять на пять для игры в местоположение торговцев мороженым; приведенные ниже исходные данные помогут вам начать и проверить правильность своих расчетов:

• если оба торговца решают разместить свои торговые точки в кластере А, каждый из них продаст 85 единиц продукции;

• если первый торговец выберет кластер Б, а второй кластер В, первый продаст 150, а второй 170 единиц продукции;

• если первый торговец выберет кластер Д, а второй кластер Б, первый продаст 150, а второй 200 единиц продукции.

b) Исключите как можно больше доминируемых стратегий.

c) В оставшихся ячейках таблицы найдите все равновесия Нэша в чистых стратегиях.

d) Если преобразовать эту игру в игру с последовательными ходами, в которой первый торговец выбирает место первым, а второй вторым, то каким будет местоположение торговых точек и какой объем продаж будет получен в результате совершенного равновесия подыгры? Как изменение времени выполнения ходов помогает участникам игры решить проблему координации, о которой идет речь в пункте с?

U7. Вернитесь к игре между тремя львами в римском Колизее, представленной в упражнении S8 в главе 3.

a) Опишите ее в стратегической форме, где льву 1 соответствуют строки, льву 2 столбцы, а льву 3 страницы.

b) Найдите равновесия Нэша в этой игре. Сколько их вы нашли?

c) Вы должны были обнаружить равновесия Нэша, которые не будут совершенными равновесиями подыгры. Какой лев представляет недостоверные угрозы в случае каждого из этих равновесий? Объясните свою точку зрения.

U8. Предположим, что в игре с размещением магазинов в торговых центрах (из упражнения S9 главы 3 и упражнения S10 в данной главе) ходы выполняются последовательно, но в другом порядке: Big Giant, затем Titan, а затем Frieda’s.

a) Нарисуйте новое дерево игры.

b) Найдите совершенное равновесие подыгры этой игры. Чем оно отличается от совершенного равновесия подыгры, полученного в упражнении S9 в главе 3?

c) Опишите новую версию игры в стратегической форме.

d) Найдите все равновесия Нэша в этой игре. Сколько их? Как это соотносится с количеством равновесий, найденных в упражнении S10 в данной главе?

U9. Вернитесь к игре между Моникой и Нэнси из упражнения U10 в главе 5. Допустим, они выбирают количество усилий последовательно, а не одновременно. Моника делает это первой, а Нэнси, узнав об этом решении, также выбирает количество усилий.

a) Найдите совершенное равновесие подыгры, при котором общая прибыль определяется по формуле 5m + 4n + mn, затраты Моники и Нэнси, связанные с вложением усилий, составляют m2 и n2 соответственно и Моника принимает решение о количестве усилий первой.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг