Теперь предположим, что все три магазина одновременно отправляют запрос в Urban Mall, а два имеющихся помещения распределяются посредством лотереи, что дает каждому магазину равные шансы на получение торговой площади в Urban Mall. При такой схеме вероятность каждого магазина попасть в Urban Mall составляла бы две трети (или 66,67 процента), если бы все три магазина отправили запросы, а вероятность оказаться в одиночестве в Rural Mall — одну треть (33,33 процента).
b) Постройте таблицу новой версии одновременной игры с размещением магазинов в торговых центрах. Найдите в ней все равновесия Нэша. Какие из них, по вашему мнению, будут выбраны на практике с наибольшей вероятностью? Обоснуйте свой вывод.
c) Сравните и проведите различие между равновесиями, найденными в пункте b и а. Вы получили одни и те же равновесия Нэша? Почему да или почему нет?
S12.
Вернитесь к игре между Моникой и Нэнси из упражнения S10 в главе 5. Допустим, они выбирают количество усилий последовательно, а не одновременно. Моника делает выбор первой, а Нэнси, узнав об этом, также делает выбор.a) Найдите совершенное равновесие подыгры, при котором общая прибыль определяется по формуле 4
b) Сравните выигрыши Моники и Нэнси с выигрышами, вычисленными в упражнении S10
в главе 5. В этой игре присутствует преимущество первого или второго хода? Обоснуйте свой ответ.S13.
В расширенном варианте упражнения S12 Монике и Нэнси необходимо решить, кто из них выберет количество усилий в первую очередь. Для этого каждая из них пишет на листке бумаги, будет ли она делать это первой. Если обе напишут «да» или «нет», значит, им предстоит выбирать количество усилий одновременно, как в упражнении S10 в главе 5. Если Моника напишет «да», а Нэнси «нет», то Моника будет первой принимать решение о количестве усилий, как в упражнении S12. Если Моника напишет «нет», а Нэнси «да», тогда Нэнси первой примет решение.a) На основании выигрышей Моники и Нэнси, полученных в упражнении S12
выше, а также в упражнении S10 в главе 5, постройте таблицу для первого этапа игры в принятие решений. (Подсказка: обратите внимание на симметричность игры.)b) Найдите равновесия Нэша в чистых стратегиях на первом этапе игры.
Упражнения без решений
U1.
Рассмотрим игру с участием двух игроков, А и Б. Игрок А ходит первым и выбирает либо «вверх», либо «вниз». Если игрок А выберет «вверх», игра завершится и каждый получит выигрыш 2. Если игрок А сыграет «вниз», наступит очередь игрока Б делать ход, выбрав один из двух вариантов — «налево» или «направо». Если Б выберет «налево», оба игрока получат выигрыш 0, если «направо», игрок А получит выигрыш 3, а игрок Б — выигрыш 1.a) Нарисуйте дерево этой игры и найдите совершенное равновесие подыгры.
b) Представьте эту игру с последовательными ходами в стратегической форме и отыщите все равновесия Нэша. Какое из них будет совершенным равновесием подыгры? Если таковых нет, объясните почему.
c) Какой метод решения можно было бы использовать для поиска совершенного равновесия подыгры на основании стратегической формы игры? (Подсказка: перечитайте два последних абзаца раздела 4
.)U2.
Вернитесь к дереву игры с двумя участниками в пункте а упражнения U2 в главе 3.a) Опишите игру в стратегической форме, где Альбусу соответствуют строки, а Минерве — столбцы. Найдите все равновесия Нэша.
b) Выявите проблемы с достоверностью для равновесий, найденных в пункте а данного упражнения, которые не будут совершенными равновесиями подыгры.
U3.
Вернитесь к дереву игры с двумя участниками в пункте b упражнения U2 в главе 3.a) Опишите игру в стратегической форме. Найдите все равновесия Нэша.
b) Выявите проблемы с достоверностью для равновесий, найденных в пункте а данного упражнения, которые не будут совершенными равновесиями подыгры.
U4.
Вернитесь к дереву игры с двумя участниками в пункте а упражнения U2 в главе 3.a) Составьте таблицу этой игры, в которой Альбусу соответствуют строки, Минерве — столбцы, а Северусу — страницы. Найдите все равновесия Нэша.
b) Выявите проблемы с достоверностью для равновесий, найденных в пункте а, которые не будут совершенными равновесиями подыгры.