Читаем Стратегические игры полностью

«Налево»: 45qл + 90qц + 90qп = 45qл + 90(1 — qл — qп) + 90qп = 45qл + 90(1 — qл).

«В центре»: 70qл + 0qц + 70qп = 70qл + 70qп.

«Направо»: 95qл + 95qц + 60qп = 95qл + 95(1 — qл — qп) + 60qп = 95(1 — qл) + 60qп.

Приравняв выражения, соответствующие стратегиям «налево» и «направо», и упростив полученное равенство, имеем 90–45qл = 95–35qп, или 35qп = 5 + 45qл. Далее приравниваем выражения, соответствующие стратегиям «налево» и «в центр», и упрощаем их, что дает 90–45qл = 70qл + 70qп, или 115qл + 70qп = 90. Подставив qп из первого уравнения (сначала умножив все члены уравнения на 2, чтобы вышло 70qп = 10 + 90qл) во второе, получаем 205qл = 80, или qл = 0,390. Затем, подставив это значение qл в любое из уравнений, получим qп = 0,644. И наконец, используем эти оба значения, чтобы получить qц = 1–0,390 — 0,644 = –0,034. Поскольку значение вероятности не может быть отрицательным, что-то явно пошло не так.

Чтобы понять, что происходит в данном примере, для начала обратите внимание на то, что теперь для бьющего пенальти игрока стратегия «в центр» хуже этой же стратегии в первоначальной версии игры, где вероятность ее выбора уже была достаточно низкой. Однако логика безразличия соперника, выраженная в виде уравнений, приведших к данному решению, означает, что бьющий игрок должен быть готов использовать эту плохую стратегию. Это может произойти только тогда, когда вратарь достаточно редко применяет свою наилучшую стратегию противодействия стратегии бьющего игрока «в центр», а именно стратегию «в центре». В данном примере такую логику рассуждений необходимо продолжать до тех пор, пока вероятность применения вратарем стратегии «в центре» не станет отрицательной.

С сугубо алгебраической точки зрения полученное решение вполне приемлемо, однако оно нарушает требование теории вероятностей и свойственной реальной жизни рандомизации в отношении того, что значение вероятности не может быть отрицательным. Лучшее, что здесь можно сделать, — снизить вероятность выбора вратарем стратегии «в центре» до минимального значения, то есть до нуля. Но в этом случае бьющий игрок не склонен к выбору стратегии «в центр». Иными словами, мы получаем ситуацию, в которой каждый игрок не использует одну из своих чистых стратегий в смешанной стратегии или использует ее с нулевой вероятностью.

Но тогда может ли существовать равновесие, в котором каждый игрок смешивает две оставшиеся стратегии — «налево» и «направо»? Если рассматривать эту сокращенную игру два на два саму по себе, можно без труда найти ее равновесие в смешанных стратегиях. Учитывая, что к настоящему моменту вы уже накопили достаточно большой опыт, мы оставляем детали поиска равновесия вам и приводим только полученный результат.

Вероятности применения чистых стратегий в смешанной стратегии бьющего игрока: pл = 0,4375, pл = 0,5625.

Вероятности применения чистых стратегий в смешанной стратегии вратаря: qл = 0,3750, qп = 0,6250.

Ожидаемый выигрыш бьющего игрока (процент успеха): 73,13.

Ожидаемый выигрыш вратаря (процент успеха): 26,87.

Мы получили этот результат, просто исключив стратегии двух игроков «в центр» и «в центре», руководствуясь интуицией. Но мы должны проверить, действительно ли это равновесие будет таковым в полной игре три на три, то есть должны убедиться, что ни один игрок не сочтет нужным применить третью стратегию в случае комбинации двух стратегий, выбранных другим игроком.

При выборе вратарем той или иной комбинации стратегий выигрыш бьющего игрока от применения чистой стратегии «в центр» составляет 0,375 × 70 + 0,625 × 70 = 70, что меньше выигрыша 73,13, который он получит от любой из своих чистых стратегий «налево» и «направо» или от любой их комбинации, а значит, бьющему игроку нет необходимости применять стратегию «в центр». Когда бьющий игрок выбирает комбинацию из двух стратегий с указанными выше вероятностями, выигрыш вратаря от использования чистой стратегии «в центре» составляет 0,4375 × 10 + 0,5625 × 50 = 7,2. И он существенно ниже выигрыша 26,87, который вратарь получил бы в случае применения любой из своих чистых стратегий «налево» и «направо» или от любой их комбинации. Таким образом, вратарю также не имеет смысла применять стратегию «в центре». Следовательно, равновесие, которое мы нашли для игры два на два, актуально и для игры три на три.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература