Птолемеева таблица хорд – самая ранняя из известных нам тригонометрических таблиц. Этот невероятно полезный инструмент выдает значения длин хорд на промежутке от ½ до 180° с шагом в полградуса. Птолемей постоянно ссылался на эту таблицу в тексте «Альмагеста». Используя ряд хитрых приемов, с ее помощью он мог ответить почти на любой вопрос математической астрономии: например, вычислить продолжительность самого длинного дня в какой-нибудь экзотической стране, где и не мечтал побывать, – и это только для начала. Обращаться к функциям синуса, косинуса и тангенса, которыми мы пользуемся сегодня, не было необходимости (хотя квадрат теней на обратной стороне астролябии представляет собой удобную таблицу тангенсов).
Рис. 5.3.
Одна из первых хорд, вычисленных Птолемеем. Дуга – часть окружности с радиусом 60. Хорда – пунктирная линия, соединяющая два конца дуги. Ее длина приведена в стандартной шестидесятеричной записи, которую мы вместе с Джоном Вествиком изучали в главе 2. Целая часть отделяется точкой с запятой, а последующие – просто запятой. (Так как эта дуга противолежит углу в 36°, ее длина составляет одну десятую длины всей окружности, или 12π = 37;41,57°.)Идеи Птолемея подхватили и существенно развили геометры Индии и исламского мира. Английские астрономы в век Джона Вествика еще только знакомились с их достижениями. Начиная свою научную карьеру, Ричард Уоллингфордский написал трактат из четырех частей, посвященный тригонометрии, в котором суммировал все, что читал о хордах, синусах и прочих функциях. Позже, незадолго до того, как его доконала проказа, Ричард переписал этот трактат, включив в него труды Джабира ибн Афлаха, мусульманина, жившего в XII веке в Севилье[328]
. Но обычно, решая стоявшие перед ним астрономические задачи, Ричард обходился не столь современными идеями Птолемея.Самой полезной из них была удивительно функциональная теорема из двух частей, которую обычно приписывают Менелаю Александрийскому, жившему за 100 лет до Птолемея. Ее называют теоремой Менелая, но сформулировал ее, скорее всего, не он. Теорема позволяла математикам вычислять длину дуг, пересекающихся на кривой поверхности сферы. Птолемей, похоже, пользовался ранней версией теоремы, поскольку, излагая ее, он не упоминал Менелая, хотя повсюду в «Альмагесте» воздает тому должное за педантичные наблюдения Луны и звезд на широте Рима. Но кто бы ни был автором теоремы – чего мы, скорее всего, никогда не узнаем наверняка, – без нее не мог обойтись ни один астроном, желавший предсказывать и измерять движение светил[329]
.Птолемей сперва доказал теорему Менелая, а затем применил ее для измерений в простейшем случае вращения небесной сферы – на экваторе Земли. На этой уникальной широте Северный небесный полюс располагается на горизонте, а все звезды встают вертикально (см. рис. 1.3). Именно благодаря тому что звезды здесь восходят под прямым углом к горизонту, расстояние, измеряемое по небесному экватору, называется прямым восхождением. На этой единственной широте, где небесный экватор пересекает горизонт под прямым углом, несложно определить, какая часть экватора взойдет за то же время, что и определенная часть эклиптики. Чтобы узнать, когда поднимется та или иная звезда, или вычислить точную длину светового дня, нам потребуются только два числа. Первое – расстояние между экватором и точкой эклиптики, которая восходит в нужный нам момент. Оно называется
Птолемей освещает эти вопросы в первой книге «Альмагеста». Там он приводит таблицу склонений и объясняет, как измерить наклонение эклиптики к экватору с помощью двух крупных инструментов. Во второй книге он делает следующий шаг. В очередной раз применив теорему Менелая, он показывает, как перейти от времени восхождения знаков зодиака на широте экватора – это прямое восхождение – ко времени восхода в любой точке мира. В этом случае знаки зодиака встают из-за горизонта не под прямым углом, и такое восхождение называется уже не прямым, а