Читаем Тайна за тремя стенами. Пифагор. Теорема Пифагора полностью

Даже Николай Коперник (1473-1543) в своем великом труде De revolutionibus orbium celestium («О вращении небесных тел»), опубликованном в год его смерти, переместил Землю из центра Вселенной и заменил ее Солнцем, но остался верен круговым орбитам. Только в 1609 году Иоганн Кеплер (1571— 1630) предположил, что орбиты на самом деле эллиптические. Но даже этот революционер не смог полностью избавиться от влияния поэтической идеи о музыкальной гармонии космоса. Хотя Кеплер был ключевой фигурой для научной революции, этот великий немецкий астроном и математик оставался мистиком. Тридцать лет своей жизни он потратил на то, чтобы доказать, что движение планет подчиняется пифагорейским законам гармонии. В поисках фундаментального закона, объясняющего неправильность планетных орбит, Кеплер измерил для каждой планеты ее максимальную скорость в перигелии (ближайшей к Солнцу точке орбиты) и в афелии (самой дальней от Солнца точке). К радости ученого, соотношения между двумя этими скоростями соответствовали гармоническим интервалам, и поэтому он обозначил эти соотношения символами музыкальной нотации, отдав таким образом дань пифагорейской идее музыки сфер. Кеплер изложил свою теорию в трактате Harmonia mundi («Гармония мира»), вышедшем в 1619 году. На его страницах он представил гамму и аккорды, связанные с каждой из планет. Согласно автору, планеты исключительно редко звучат все вместе в совершенном согласии, такая симфония может сложиться только один раз за всю историю мира с момента его сотворения.


ГЛАВА 6

Крах универсальной арифметики

Пифагорейская картина совершенного музыкального космоса, основанная на священном числе, столкнулась с большой проблемой: это число должно быть целым. Хотя дроби были уже известны, греческая арифметика игнорировала их. Однако сама теорема Пифагора несла в себе зерна разрушения, и чтобы они проросли, надо было всего лишь произвести некоторые простые, но фатальные расчеты. Появление иррациональных чисел означало крах пифагорейской универсальной арифметики.

Нельзя утверждать, что пифагорейцы не имели никакого представления о дробях. Последователи самосского мудреца использовали эквивалентную дробям концепцию соотношений между целыми числами, которые позволяли им, к примеру, объяснять звуковую гармонию двух струн, выражая ее в отношениях их длин: 2:1, 3:2, 4:3... Дроби были известны математике еще со времен Месопотамии, где они использовались в повседневной жизни — например, в торговле для обозначения частей денежных единиц. Но при всем этом во времена пифагорейцев математики считали дроби чем-то несовершенным и бесполезным.

Может быть точно установлено, как две величины, А и В, соотносятся друг с другом, с использованием только целых чисел.

На рисунке верхняя строка длиннее нижней, а нижняя — в 13/20 раза короче верхней.


Самое прочное убеждение последователей Пифагора, опора их арифметической вселенной, состояло в том, что любые две величины всегда соизмеримы, то есть их всегда можно сопоставить с двумя целыми числами. Принцип соизмеримости относится к тому, что сегодня называют рациональными числами. Рациональное число — это число, которое можно представить как дробь, то есть отношение, или коэффициент, между двумя целыми числами (при этом делитель не должен быть равен нулю). Пифагорова соизмеримость может быть представлена как закон, согласно которому точно устанавливается, во сколько раз величины А и В больше (или меньше) одна другой. В современных математических терминах мы бы сказали, что две произвольные величины А и В соизмеримы тогда, когда существует третья величина С и два целых числа р и q, так чтобы С укладывалось р раз в А и q раз — в В.


КЛАССИФИКАЦИЯ ЧИСЕЛ

Современная математика определяет число как элемент множества, который обладает некоторыми свойствами. Так, существуют множества N, Z, Q, R и С, которые представляют собой последовательные ступени, начиная с множества натуральных чисел N.

С КомплексныеR ВещественныеQ РациональныеZ ЦелыеN НатуральныеПростые
Составные
0 Ноль
Целые отрицательные
Дробные
Иррациональные
Мнимые

— Комплексные (С): сумма вещественного и мнимого чисел.

— Вещественные (R): совокупность рациональных и иррациональных чисел.

Перейти на страницу:

Все книги серии Наука. Величайшие теории

Похожие книги

История Франции. С древнейших времен до Версальского договора
История Франции. С древнейших времен до Версальского договора

Уильям Стирнс Дэвис, профессор истории Университета штата Миннесота, рассказывает в своей книге о самых главных событиях двухтысячелетней истории Франции, начиная с древних галлов и заканчивая подписанием Версальского договора в 1919 г. Благодаря своей сжатости и насыщенности информацией этот обзор многих веков жизни страны становится увлекательным экскурсом во времена антики и Средневековья, царствования Генриха IV и Людовика XIII, правления кардинала Ришелье и Людовика XIV с идеями просвещения и величайшими писателями и учеными тогдашней Франции. Революция конца XVIII в., провозглашение республики, империя Наполеона, Реставрация Бурбонов, монархия Луи-Филиппа, Вторая империя Наполеона III, снова республика и Первая мировая война… Автору не всегда удается сохранить то беспристрастие, которого обычно требуют от историка, но это лишь добавляет книге интереса, привлекая читателей, изучающих или увлекающихся историей Франции и Западной Европы в целом.

Уильям Стирнс Дэвис

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Образование и наука
The Beatles от A до Z: необычное путешествие в наследие «ливерпульской четверки»
The Beatles от A до Z: необычное путешествие в наследие «ливерпульской четверки»

Британский писатель, продюсер и музыкант Питер Эшер рассказывает историю «Битлз» через песни: их собственные, их коллег, предшественников и последователей. Для этого он использует классическую алфавитную систему, однако применяет ее неожиданным образом. К примеру, вы не встретите известнейших «Yesterday» на букву Y или «All you need is love» на букву A, вместо этого Эшер рушит устоявшиеся ассоциации и заменяет их другими, показывая даже привычные треки с новой стороны. При этом автор так искусно препарирует музыкальные композиции, указывая нам на важные и «вкусные» детали, что вам гарантированно захочется все это переслушать – так не отказывайте себе в удовольствии.И не забывайте, что Эшер лично знал легендарную «четверку», ведь Пол Маккартни даже когда-то жил в его доме! Поэтому здесь нашлось место и для уникальных историй и воспоминаний, которые вряд ли можно прочесть где-либо еще.Эта книга – повод влюбиться в музыку «Битлз» снова.

Питер Эшер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература