Читаем Тени разума. В поисках науки о сознании полностью

Вернемся к вопросу об ошибочных (но допускающих исправление) ☆-утверждениях, которые может время от времени выдавать наш робот. Предположим, что робот такую ошибку все-таки совершил. Если мы можем допустить, что какой-либо другой робот, или тот же робот несколько позднее, или другой экземпляр того же робота такую же ошибку вряд ли совершит, то мы в принципе сможем установить факт ошибочности данного ☆-утверждения, проанализировав действия ансамбля из всех возможных роботов. Представим себе, что моделирование поведения всей совокупности возможных роботов осуществляется в нашем случае таким образом, что различные этапы развития различных экземпляров нашего робота мы рассматриваем как одновременные. (Это делается лишь для удобства рассмотрения и никоим образом не подразумевает, что для такого моделирования непременно требуется параллельное выполнение действий. Как мы уже видели, принципиальных различий, помимо эффективности, между параллельным и последовательным выполнением вычислений нет; см. §1.5). Такой подход должен, в принципе, дать нам возможность уже на стадии рассмотрения результата моделирования выделить из общей массы корректных ☆-утверждений редкие (относительно) ошибочные ☆-утверждения, воспользовавшись тем обстоятельством, что ошибочные утверждения «исправимы» и будут посему однозначно идентифицироваться как ошибочные подавляющим большинством участвующих в модели экземпляров нашего робота, — по крайней мере, с накоплением с течением времени (модельного) различными экземплярами робота достаточного параллельного «опыта». Я вовсе не требую, чтобы подобная процедура была осуществима на практике; достаточно, чтобы она была вычислительной, а лежащие в основе всего этого вычисления правила M — в принципе «познаваемыми».

Для того чтобы приблизить нашу модель к виду, приличествующему человеческому математическому сообществу, а также лишний раз удостовериться в отсутствии ошибок в ☆-утверждениях, рассмотрим ситуацию, в которой все окружение нашего робота разделяется на две части: сообщество других роботов и остальное, лишенное роботов (а также и людей), окружение; в дополнение к остальному окружению, в модель следует ввести некоторое количество учителей, по крайней мере, на ранних этапах развития роботов, и хотя бы для того, чтобы все роботы одинаково понимали строгий смысл присвоения тому или иному утверждению статуса ☆. В моделируемый нами ансамбль войдут на правах различных экземпляров все возможные различные варианты поведения всех роботов, а также все возможные (релевантные) варианты остального окружения и предоставляемых человеком сведений, варьирующиеся в зависимости от конкретного выбора задействованных в модели случайных параметров. Как и ранее, правила, по которым будет функционировать наша модель (и которые я опять обозначу буквой M), можно полагать в полной мере познаваемыми, невзирая на необычайную сложность всех сопутствующих расчетов, необходимых для ее практической реализации.

Предположим, что мы берем на заметку все (в принципе) Π1-высказывания, ☆-утверждаемые (а также все высказывания с ☆-утвержденными отрицаниями) любым из всевозможных экземпляров наших (вычислительно моделируемых) роботов. Объединим все подобные ☆-утверждения в отдельную группу и назовем их безошибочными. Далее, мы можем потребовать, чтобы любое ☆-утверждение относительно того или иного Π1-высказывания игнорировалось, если в течение некоторого промежутка времени T (в прошлом или в будущем) количество r различных экземпляров этого ☆-утверждения в ансамбле из всех одновременно действующих роботов не удовлетворит неравенству r > L + Ns, где L и N суть некоторые достаточно большие числа, а s — количество ☆-утверждений, производимых в течение того же промежутка времени и занимающих относительно рассматриваемого Π1-высказывания противоположную позицию либо просто утверждающих, что рассуждения, на которые опирается исходное ☆-утверждение, ошибочны. При желании мы можем настаивать на том, чтобы промежуток времени T (это время не обязательно должно совпадать с «реальным» моделируемым временем и может измеряться в некоторых единицах вычислительной активности), равно как и числа L и N. увеличивался по мере увеличения «сложности» ☆-утверждаемого Π1-высказывания.

Понятию «сложности» применительно к Π1-высказываниям можно придать точный характер на основании спецификаций машины Тьюринга, как мы это уже делали в §2.6 (в конце комментария к возражению Q8). Для большей конкретности мы можем воспользоваться явными формулировками, представленными в НРК (глава 2), как вкратце показано в приложении А (а это уже здесь). Итак, степенью сложности Π1-высказывания, утверждающего незавершаемость вычисления Tm(n) машины Тьюринга, мы будем полагать число ρ знаков в двоичном представлении большего из пары чисел m и n.

Перейти на страницу:

Похожие книги

Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан
Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан

В книгу вошли одни из самых известных произведений английского философа Томаса Гоббса (1588-1679) – «Основы философии», «Человеческая природа», «О свободе и необходимости» и «Левиафан». Имя Томаса Гоббса занимает почетное место не только в ряду великих философских имен его эпохи – эпохи Бэкона, Декарта, Гассенди, Паскаля, Спинозы, Локка, Лейбница, но и в мировом историко-философском процессе.Философ-материалист Т. Гоббс – уникальное научное явление. Только то, что он сформулировал понятие верховенства права, делает его ученым мирового масштаба. Он стал основоположником политической философии, автором теорий общественного договора и государственного суверенитета – идей, которые в наши дни чрезвычайно актуальны и нуждаются в новом прочтении.

Томас Гоббс

Философия