Читаем Тени разума. В поисках науки о сознании полностью

Число z' (= x - iy) называется комплексным сопряженным числа z; аналогичная операция проделывается и с w. (В вышеприведенном рассуждении я неявно подразумеваю, что состояния, обозначенные мною через |F〉, |G〉 и т.д., должным образом нормированы. Смысл этого термина я объясню позднее, см. §5.12; строго говоря, нормировка необходима для того, чтобы выполнялось правило вероятностей в указанной форме.)

Именно здесь, и только здесь, на квантовую сцену выходят кардановы вероятности. Мы видим, что на квантовом уровне комплексные весовые коэффициенты не играют сами по себе роли относительных вероятностей (да и не могут этого делать, поскольку они комплексные), а вот вполне вещественные квадраты модулей этих комплексных коэффициентов такие роли играют. Более того, только теперь, после выполнения измерений, приобретают смысл понятия неопределенности и вероятности. Измерение квантового состояния происходит, в сущности, тогда, когда имеет место значительное «увеличение» некоторого физического процесса, вытягивающее его с квантового на классический уровень. В случае фотоэлемента регистрация квантового события — в виде приема фотона — вызывает в конечном счете возмущение на классическом уровне, скажем, вполне отчетливый «щелчок». Вместо фотоэлемента мы могли бы использовать для регистрации фотона высокочувствительную фотографическую пластинку. В этом случае квантовое событие «прибытие фотона» вытягивается на классический уровень в виде хорошо различимой отметки на пластинке. В каждом из случаев измерительное устройство включает в себя некую неустойчиво уравновешенную систему — ничтожно малого квантового события оказывается достаточно, чтобы нарушить это равновесие и вызвать значительно больший по масштабу и наблюдаемый на классическом уровне эффект. Именно при этом переходе от квантового уровня к классическому комплексные числа Кардано возводятся в квадрат и становятся вероятностями Кардано!

Посмотрим, как можно применить это правило к конкретной ситуации. Предположим, что вместо зеркала в правом нижнем углу установлен фотоэлемент; тогда падающий на него фотон находится в состоянии

|B〉 + i|C〉,

где состояние |B〉 означает, что фотон регистрируется фотоэлементом, тогда как в состоянии |C〉 регистрации фотона не происходит. Отношение соответствующих вероятностей при этом равно |1|2 : |i|2 = 1 : 1; т.е. вероятности каждого из двух возможных событий равны, и фотон активирует фотоэлемент с той же вероятностью, с какой и вовсе не попадает на него.

Рассмотрим несколько более сложный случай. Допустим, что мы не заменяем зеркало в правом нижнем углу фотоэлементом, а полностью блокируем один из лучей неким непрозрачным «фотонопоглощающим» препятствием — скажем, луч, соответствующий состоянию |D〉 фотона (см. рис. 5.13); при этом интерференция, имевшая место ранее, оказывается нарушена. Теперь, миновав последнее зеркало, фотон может перейти в состояние |G〉 (возможность |F〉 тоже пока никто не отменял) — однако лишь при условии, что не будет поглощен препятствием. Если препятствие поглощает фотон, то он вообще не дойдет до детекторов, ни в состоянии |F〉, ни в состоянии |G〉, ни в какой бы то ни было их комбинации. Если же поглощения не происходит, то последнего зеркала фотон достигнет, пребывая в «простом» состоянии —|E〉, которое после прохождения зеркала эволюционирует в —|F〉 - i|G〉. Таким образом, в конечном результате действительно присутствуют обе альтернативы — и |F〉, и |G〉.

Рис. 5.13. Если перекрыть луч |D〉 каким-либо препятствием, то детектор G также сможет зарегистрировать прибытие фотона (при условии, что этот фотон не будет раньше поглощен препятствием!).

В том случае, когда препятствие (в рассмотренной конкретной схеме) не поглощает фотон, комплексные весовые коэффициенты, соответствующие возможным состояниям |F〉 и |G〉, равны —1 и —i. Таким образом, отношение вероятностей равно |—1|2 : |—i|2, что опять дает одинаковые вероятности для обоих возможных событий — фотон активирует детектор в точке |F〉 с той же вероятностью, с какой он активирует детектор в точке |G〉.

Перейти на страницу:

Похожие книги

Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан
Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан

В книгу вошли одни из самых известных произведений английского философа Томаса Гоббса (1588-1679) – «Основы философии», «Человеческая природа», «О свободе и необходимости» и «Левиафан». Имя Томаса Гоббса занимает почетное место не только в ряду великих философских имен его эпохи – эпохи Бэкона, Декарта, Гассенди, Паскаля, Спинозы, Локка, Лейбница, но и в мировом историко-философском процессе.Философ-материалист Т. Гоббс – уникальное научное явление. Только то, что он сформулировал понятие верховенства права, делает его ученым мирового масштаба. Он стал основоположником политической философии, автором теорий общественного договора и государственного суверенитета – идей, которые в наши дни чрезвычайно актуальны и нуждаются в новом прочтении.

Томас Гоббс

Философия