Читатель, должно быть, уже отметил некую досадную незавершенность всех наших рассуждений, выражающуюся в отсутствии ответа на вопрос «Когда
(а главное, почему) квантовые правила переходят от квантового детерминизма комплексных весовых коэффициентов к классическим вероятностно-взвешенным недетерминированным альтернативам, каковой переход выражается математически в возведении в квадрат модулей соответствующих комплексных чисел?». Что есть такого в одних физических материальных образованиях — таких, например, как детекторы фотонов в точках F и G или зеркало в нижнем правом углу (или то же возможное препятствие для фотонов на пути луча D), — что делает их объектами классического уровня, в противоположность другим физическим объектам, скажем, фотонам, которые оказываются на квантовом уровне, и требуют поэтому совершенно иного с собой обращения? Только ли в том дело, что фотон — это система физически простая, что позволяет рассматривать его целиком как объект квантового уровня, тогда как детекторы и препятствия являются системами сложными, которые можно рассматривать лишь приближенно, в результате чего тонкости квантового поведения растворяются в усредненных данных наблюдений? Многие физики, несомненно, ответят на последний вопрос утвердительно: все физические объекты, скажут они вам, следует рассматривать с позиций квантовой механики, и лишь руководствуясь соображениями удобства, мы исследуем большие и сложные системы классическими методами, причем правила вероятностей, задействованные в процедуре R, являются, в некотором роде, следствием упомянутого приближенного рассмотрения. В §§6.6 и 6.7 мы увидим, что от наших трудностей (связанных с присутствием в квантовой теории X-загадок) такая точка зрения отнюдь не спасает, равно как не объясняет она и смысла удивительного R-правила, согласно которому из квадратов модулей комплексных весовых коэффициентов чудесным образом получаются вероятности. И все же нам придется пока как-то усмирить нашу досаду и продолжить знакомство с выводами квантовой теории, в особенности с теми, что имеют отношение к ее Z-загадкам.5.9. Решение задачи Элитцура—Вайдмана об испытании бомб
Мы уже знаем вполне достаточно для того, чтобы отыскать решение задачи об испытании бомб, поставленной в §5.2
. Прежде всего нужно выяснить, нельзя ли использовать сверхчувствительное зеркальце на носу бомбы в качестве измерительного устройства (как были использованы, например, препятствие и подвижное зеркало с детектором в описанных выше примерах). Построим систему зеркал (два непрозрачных, два полупрозрачных), которая в точности повторяет систему из предыдущего примера (см. рис. 5.14) за одним исключением: в правом нижнем углу вместо подвижного зеркала поместим зеркальце бомбы.Смысл такого построения в том, что если бомба является холостой (в том единственном смысле, который подразумевается в условии задачи), то ее зеркальце остается в любом случае неподвижным (поскольку его заклинило), и общая картина эквивалентна показанной на рис. 5.12
. Фотон, испущенный из источника, попадает на первое зеркало, будучи в состоянии |A〉. Поскольку такая ситуация полностью совпадает с той, что мы рассмотрели в §5.7, фотон после последнего зеркала приобретает, как и тогда, состояние |F〉 (пропорциональное |F〉, если точнее). Иначе говоря, детектор в точке F регистрирует прибытие фотона, а детектор в точке G не регистрирует ничего.