Рис. 5.15. В случае частицы со спином 1/2 (электрона, протона или нейтрона) все спиновые состояния представляют собой комплексные суперпозиции двух основных состояний: «вверх» и «вниз».
Попробуем представить все вышесказанное в более явном и геометрически наглядном виде. Такое представление поможет нам увидеть, что комплексные весовые коэффициенты w и z вовсе не являются такими уж абстрактными конструкциями, какими они могли показаться на первый взгляд. Более того, к геометрии пространства они имеют самое непосредственное отношение. (Мне думается, такие геометрические воплощения понравились бы Кардано и, возможно, облегчили бы его «мучения разума» — впрочем, и квантовая теория вполне исправно снабжает наши разумы все новыми мучениями!)
Для начала будет весьма полезно ознакомиться со ставшим уже стандартным представлением комплексных чисел в виде точек на плоскости. (У этой плоскости много названий: плоскость Арганда, плоскость Гаусса, плоскость Весселя или просто комплексная
плоскость.) Идея состоит в том, чтобы поставить в соответствие комплексному числу z = x + iy (где x и y — вещественные числа) точку, координаты которой в некоторой заданной прямоугольной системе координат равны (x, y) (см. рис. 5.16). Таким образом, например, четыре комплексных числа 1, 1 + i, i и 0 образуют на комплексной плоскости квадрат. Существуют простые геометрические правила для отыскания суммы и произведения двух комплексных чисел (см. рис. 5.17). Отрицательное комплексное число —z находится отражением точки, соответствующей числу z, относительно начала координат; комплексное сопряженное z — отражением точки z относительно оси x.Рис. 5.16. Представление комплексного числа в виде точки на комплексной плоскости (плоскости Арганда—Гаусса—Весселя).
Рис. 5.17. Геометрические описания основных операций над комплексными числами.
Модуль комплексного числа равен расстоянию от соответствующей этому числу точки до начала координат; квадрат модуля, таким образом, равен квадрату этого расстояния. Точки, расстояние от которых до начала координат равно единице, образуют единичную окружность (см. рис. 5.18
). Этим точкам соответствуют комплексные числа с единичным модулем, называемые иногда чистыми фазами; эти числа можно записать в видеeiθ
= cos θ + i sin θ,здесь θ
— вещественное число, равное величине угла между прямой, соединяющей начало координат с соответствующей этому числу точкой, и осью x.[39]Рис. 5.18. Единичную окружность образуют точки, соответствующие комплексным числам z
= eiθ, где θ — вещественное число; |z| = 1.Теперь выясним, как в таком представлении выглядят отношения
комплексных чисел. Выше я уже указывал на то, что при умножении вектора состояния на ненулевое комплексное число состояние не претерпевает физических изменений (например, если помните, состояния —2|F〉 и |F〉 мы полагали физически одинаковыми). Таким образом, в общем случае, состояние |ψ〉 физически идентично состоянию u|ψ〉 при любом ненулевом комплексном u. Применительно к состоянию|ψ
〉 = w|↑〉 + z|↓〉,умножение w
и z на одно и то же ненулевое комплексное число и не приведет к какому-либо изменению физического феномена, соответствующего этому состоянию. Физически различными спиновые состояния могут быть только в том случае, если их векторы состояний характеризуются различными отношениями z : w (а при u ≠ 0 отношения uz : uw и z : w равны).Как же изобразить комплексное отношение геометрически? Существенное отличие комплексного отношения от просто комплексного числа заключается в том, что в качестве значения комплексного отношения допускается не только конечное комплексное число, но и бесконечность
(обозначается символом ∞). Так, если рассматривать, в общем случае, отношение z : w как эквивалент «одиночного» комплексного числа z/w, то при w = 0 мы сталкиваемся с некоторыми, мягко говоря, затруднениями. Для того чтобы этих затруднений избежать, математики условились в случае w = 0 полагать число z/w равным бесконечности. Такая ситуация возникает, например, в состоянии «спин вниз»: |ψ〉 = z|↓〉 = 0|↑〉 + z|↓〉. Вспомним, что нулю не могут быть равны оба коэффициента (т.е. и w, и z одновременно), поэтому случай w = 0 вполне допустим. (Мы могли бы вместо z/w взять отношение w/z, если оно по каким-либо причинам понравилось бы нам больше; тогда символ ∞ понадобился бы нам для случая z = 0, что соответствует состоянию «спин вверх». Никакой разницы между этими двумя описаниями нет.)