Читаем Тени разума. В поисках науки о сознании полностью

Если же бомба исправна, то падение фотона на ее зеркальце приводит к срабатыванию детонатора, и бомба взрывается. Бомба, фактически, представляет собой измерительное устройство. Альтернативы квантового уровня — «фотон падает на зеркальце» и «фотон не падает на зеркальце» — переводятся бомбой в альтернативы классического уровня — «бомба взрывается» и «бомба не взрывается». На состояние |B〉 + i|C〉 бомба реагирует взрывом, если обнаруживает, что фотон находится в состоянии |B〉; если же фотон находится в каком-то ином состоянии (т.е., в данном случае, |C〉), бомба не взрывается. Отношение вероятностей этих двух событий равно |1|2 : |i|2 = 1 : 1. Если бомба таки взорвалась, это означает, что она зарегистрировала прибытие фотона, а что будет дальше, никого уже не интересует. Если же взорваться бомбе не удалось, то состояние фотона редуцируется (как результат процедуры R) до состояния i|C〉 (падение на зеркало в левом верхнем углу), сменяясь далее (после отражения от этого зеркала) состоянием —|E〉. По прохождении последнего (полупрозрачного) зеркала фотон переходит в состояние —|F〉 - i|G〉, т.е. отношение вероятностей возможных исходов — «прибытие фотона регистрируется детектором в точке F» и «прибытие фотона регистрируется детектором в точке G» — равно |—1|2 : |—i|2 = 1 : 1. Точно такое же отношение мы получили в примерах, описанных в предыдущем параграфе, для тех случаев, когда фотон не поглощался препятствием, а стрелка не отклонялась. Детектор, расположенный в точке G, получает, таким образом, вполне определенную возможность уловить фотон.

Предположим теперь, что при проведении одного из таких испытаний в некоторых случаях «не-взрыва» бомбы обнаруживается, что детектор G и в самом деле регистрирует прибытие фотона. Согласно нашим рассуждениям, это возможно лишь в том случае, если детонатор бомбы исправен! Если бомба неисправна, то фотон может быть зарегистрирован только детектором F. Следовательно, во всех случаях, когда срабатывает детектор G, мы можем с чистой совестью гарантировать, что данная бомба «работоспособна» и в случае необходимости не подведет. Таким образом, задачу об испытании бомб (§5.2) можно считать решенной[37].

Судя по участвующим в процессе вероятностям, после достаточно большого количества испытаний половина бомб взорвется, и никакой дальнейшей пользы из них извлечь не удастся. Более того, на тех бомбах, что не взорвались, детектор G сработает только в половине случаев. Таким образом, после того, как мы переберем все бомбы одну за другой, мы сможем гарантировать работоспособность только четверти из первоначального запаса исправных бомб. Оставшиеся бомбы мы можем подвергнуть повторному испытанию, отбирая те, на которых сработал детектор G. Повторим испытание еще раз. И еще. В конечном счете у нас останется треть (поскольку 1/4 + 1/16 + 1/64 + … = 1/3) от первоначального количества исправных бомб, но зато все эти бомбы будут гарантированно работоспособны. (Я не знаю, для чего эти бомбы предназначены, однако, думаю, благоразумно будет лишних вопросов не задавать!)

Читателю описанная процедура может показаться чересчур расточительной, однако поразительно здесь то, что она вообще осуществима. Никакими классическими методами задача не решается. Только в квантовой теории контрфактуальные вероятности могут действительно повлиять на физический результат. Наша квантовая процедура позволяет добиться того, что кажется невозможным, — что и в самом деле невозможно в рамках классической физики. Следует, кроме того, отметить, что с помощью некоторых усовершенствований потери можно снизить с двух третей до практически половины (см. [114]). Еще более поразительного результата добились не так давно П. Г. Квят, X. Вайнфуртер, А. Цайлингер и М. Казевич, описав процедуру (отличную от решения Элитцура—Вайдмана), позволяющую снизить потери почти до нуля!

Что касается сложностей с разработкой экспериментального устройства, способного испускать отдельные фотоны по одному за раз, то они теперь позади — такие устройства уже созданы и вполне доступны (см. [168]).

Перейти на страницу:

Похожие книги

Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан
Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан

В книгу вошли одни из самых известных произведений английского философа Томаса Гоббса (1588-1679) – «Основы философии», «Человеческая природа», «О свободе и необходимости» и «Левиафан». Имя Томаса Гоббса занимает почетное место не только в ряду великих философских имен его эпохи – эпохи Бэкона, Декарта, Гассенди, Паскаля, Спинозы, Локка, Лейбница, но и в мировом историко-философском процессе.Философ-материалист Т. Гоббс – уникальное научное явление. Только то, что он сформулировал понятие верховенства права, делает его ученым мирового масштаба. Он стал основоположником политической философии, автором теорий общественного договора и государственного суверенитета – идей, которые в наши дни чрезвычайно актуальны и нуждаются в новом прочтении.

Томас Гоббс

Философия