Кроме того, само препятствие также следует считать «измерительным устройством» — коль скоро варианты «препятствие поглощает фотон» и «препятствие не поглощает фотон» мы рассматриваем как классические альтернативы, которым нельзя поставить в соответствие комплексные весовые коэффициенты. Даже если препятствие не устроено таким деликатным образом, что квантовое событие «поглощение препятствием фотона» порождает событие, наблюдаемое на классическом уровне, следует все же полагать, что такое устройство препятствия принципиально возможно
. Существенным обстоятельством здесь является то, что в результате поглощения фотона некое значительное количество составляющего препятствие материала подвергается определенному, пусть и малому, возмущению — при этом практически невозможно собрать всю связанную с таким возмущением информацию, чтобы восстановить по ней сопутствующие эффекты интерференции, характеризующие квантовые феномены. Итак, препятствие (во всяком случае, в практическом смысле) следует рассматривать как объект классического уровня, эквивалентный измерительному устройству — вне зависимости от того, регистрирует оно поглощение фотона каким-либо практически наблюдаемым образом или нет. (К этому вопросу мы еще вернемся, см. §6.6.)Учитывая вышесказанное, мы вольны воспользоваться «правилом квадратов модулей» и для вычисления вероятности того, что фотон и вправду окажется поглощен препятствием. Перед столкновением с препятствием фотон находится в состоянии i
|D〉 - |E〉, причем поглощается лишь фотон в состоянии |D〉, тогда как в состоянии |E〉 поглощения не происходит. Отношение вероятности поглощения к вероятности не-поглощения равно |i|2 : |—1|2 = 1 : 1 — обе альтернативы и здесь равновероятны.Можно произвести еще одну небольшую модификацию рассматриваемой системы: уберем препятствие для луча D
, зеркало же в правом нижнем углу не будем заменять детектором, но «прикрутим» вместо этого к зеркалу некое особого рода измерительное устройство. Предположим, что чувствительность этого устройства такова, что оно способно регистрировать (т.е. выводить на классический уровень) воздействие, оказываемое на зеркало фотоном при отражении, каким бы малым это воздействие ни было; сигналом о регистрации воздействия пусть будет отклонение стрелки на циферблате нашего устройства (см. рис. 5.14). Здесь отклонение стрелки вызывается фотоном в состоянии |B〉, состояние же |C〉 никакого воздействия на стрелку не оказывает. Принимая фотон в состоянии |B〉 + i|C〉, устройство «коллапсирует волновую функцию» и интерпретирует суперпозицию либо как состояние |B〉 (стрелка отклоняется), либо как состояние |C〉 (стрелка остается неподвижной), причем вероятности обоих исходов одинаковы (поскольку |1|2 : |i|2 = 1 : 1). Таким образом, на этом этапе также имеет место процедура R. О дальнейшей судьбе фотона мы рассуждаем примерно так же, как мы делали это выше; при этом выясняется, что — как и в случае с препятствием — вероятности регистрации фотона детекторами F и G снова равны (причем независимо от того, отклонялась стрелка или нет). Для того чтобы фотон в данной схеме мог вызвать отклонение стрелки, зеркало в правом нижнем углу должно быть достаточно «подвижным», отсутствие же жесткого закрепления нарушает хрупкий порядок, необходимый для возникновения той «деструктивной интерференции» между двумя траекториями движения фотонов от точки A к точке G, благодаря которой фотон в исходном примере не регистрировался детектором G.Рис. 5.14. Аналогичного эффекта можно достичь, поместив в правый нижний угол подвижное зеркало, снабженное неким детектором, который способен по движению зеркала определить, отразило оно фотон или нет. Интерференция здесь также оказывается нарушена, благодаря чему детектор в точке G
получает возможность зарегистрировать прибытие фотона.