В заключение отмечу, что в качестве измерительного устройства вовсе не обязательно должен выступать столь «сногсшибательный» объект, как фигурирующая в условии задачи бомба. Более того, нет никакой необходимости в том, чтобы упомянутое «устройство» оповещало бы весь внешний мир о том, что оно зарегистрировало (или не зарегистрировало) прибытие фотона. Подвижное зеркало может само по себе послужить измерительным устройством, если его вес достаточно мал для того, чтобы оно могло сколько-нибудь заметно поворачиваться под воздействием падающих на него фотонов и затем останавливаться вследствие трения. Один лишь факт подвижности зеркала (скажем, зеркала в правом нижнем углу, как в рассмотренном примере) позволит детектору в точке G
зарегистрировать прибытие фотона, даже если зеркало в действительности и не повернулось, указывая тем самым на то, что фотон отправился другой дорогой. Достичь точки G фотону позволяет потенциальная возможность поворота зеркала и ничто иное! Очень похожую роль играет и поглощающее фотоны препятствие из предыдущего параграфа. Оно, в сущности, служит для «измерения» наличия фотона где-то на пути, описываемом последовательными состояниями |B〉 и |D〉. То, что препятствие не поглощает фотон, будучи на это способно, является точно таким же «измерением», каким мы считаем состоявшееся поглощение фотона.Такие отрицательные и бесконтактные измерения, называемые нулевыми
(или невзаимодействующими) измерениями (см. [91]), имеют большое теоретическое (а возможно, в конечном счете, и практическое) значение. Предсказания квантовой теории относительно такого рода ситуаций непосредственно подтверждаются экспериментально. В частности, Квят, Вайнфуртер и Цайлингер разработали и провели эксперимент, точно воспроизводящий теоретическую процедуру Элитцура—Вайдмана для решения задачи об испытании бомб! И теоретические ожидания полностью подтвердились, что, впрочем, нас уже почему-то не удивляет. Сами же нулевые измерения мы по праву относим к наиболее фундаментальным Z-загадкам квантовой теории.5.10. Квантовая теория спина. Сфера Римана
Для того, чтобы разобраться со второй вводной квантовой головоломкой, необходимо рассмотреть структуру квантовой теории несколько подробнее. Если помните, в центр моего додекаэдра (равно как и додекаэдра моего коллеги) был помещен атом со спином 3/2. Что же такое спин, и каково его место в квантовой теории?
Спин — неотъемлемое свойство частицы. По существу, физическое понятие спина совпадает с понятием вращения[38]
(или кинетического момента) классического объекта — например, бильярдного шара, футбольного мяча или даже планеты Земля. Существует, впрочем, различие (незначительное): наибольший (практически весь) вклад в кинетический момент макроскопического объекта дают круговые движения всех составляющих его частиц вокруг общего центра масс, тогда как спин одной-единственной частицы есть свойство, присущее самой частице. Более того, спин элементарной частицы обладает любопытной особенностью: его величина всегда одинакова, а вот направление оси спина может быть разным (хотя, надо сказать, что эта самая «ось» также ведет себя весьма странно, в общем случае малосообразно с тем, как ведут себя классические оси вращения). Спин измеряется в единицах фундаментальной квантовомеханической постоянной ħ; символ этот предложен Дираком для обозначения величины, равной постоянной Планка h, деленной на 2π. Спин частицы всегда равен (неотрицательному) целому или полуцелому кратному постоянной ħ: 0, 1/2 ħ, ħ, 3/2 ħ, 2ħ и т.д. Мы, соответственно, говорим: частица со спином 0, 1/2, 1, 3/2, 2 и т.д.Начнем с рассмотрения простого случая: спин 1/2; таким спином обладают, например, электрон и нуклоны (протон и нейтрон). (Спин 0 мы рассматривать не будем, поскольку он слишком
прост — в этом случае спин может находиться лишь в одном, сферически симметричном, состоянии.) Все состояния спина 1/2 являются линейными суперпозициями двух состояний: скажем, правого спина вокруг оси, направленной вертикально вверх (обозначим это состояние через |↑〉) и правого спина вокруг оси, направленной вертикально вниз (обозначим |↓〉); см. рис. 5.15. Таким образом, в общем случае состояние спина можно представить в виде комплексной комбинации |ψ〉 = w|↑〉 + z|↓〉. На практике же каждой такой комбинации соответствует вполне определенное состояние спина (величины 1/2 ħ) частицы, при котором отношение комплексных коэффициентов w и z определяет направление оси спина. Выбор направлений ↑ и ↓ достаточно условен: для однозначного описания состояния спина сгодилась бы и любая другая пара направлений.