Для начала определите, есть ли у кого-либо из игроков доминирующая стратегия – иными словами, та, которая обеспечивает более выгодный исход игры по сравнению с другими стратегиями этого же игрока независимо от того, какой выбор он сделает. Затем следует применить правило № 2: если у вас есть доминирующая стратегия, используйте ее. Если у вас доминирующей стратегии нет, а у вашего соперника есть, исходите из предположения о том, что он ее использует, и выберите оптимальный ответный ход на эту стратегию.
В случае если ни у одного игрока нет доминирующей стратегии, необходимо определить, есть ли у кого-то из них доминируемая стратегия – стратегия, которая во всех отношениях хуже любой другой. Если такая стратегия есть, примените правило № 3: одну за другой исключите из рассмотрения все доминируемые стратегии. Если при этом вы обнаружите доминирующую стратегию, используйте ее. Получив единственно возможное решение, вы сможете определить, как именно станут действовать игроки и каким будет исход игры. Даже если эта процедура не позволит вам найти единственно верное решение, она поможет сократить масштаб игры до более приемлемого уровня. И наконец, если нет ни доминирующей, ни доминируемой стратегии или после того, как второй этап позволит вам как можно больше упростить игру, примените правило № 4: найдите равновесие или пару стратегий, при которых действия каждого игрока станут оптимальным ответным ходом на действия другого. Если существует только одно такое равновесие, есть все основания утверждать, что его должны выбрать все игроки. Если таких равновесий несколько, следует применить понятное всем правило, или договоренность, о том, какому именно равновесию следует отдать предпочтение. Если его не существует, то соперники могут использовать с выгодой для себя любое систематическое действие одного из игроков. Это, в свою очередь, свидетельствует о необходимости использования смешанных стратегий – это и есть тема следующей главы.
В реальной жизни игры могут состоять из ряда последовательных и параллельных ходов. В таком случае необходимо использовать сочетание всех перечисленных методов, для того чтобы проанализировать все возможные варианты действий и найти среди них оптимальный.
Часть II
Глава 5
Выбор и случай
Конец остряка
The Princess Bride{76}
(«Принцесса-невеста») – блестящая комедия, в которой много запоминающихся сцен. Самая интересная из них – сражение на смекалку между героем (Уэстли) и злодеем (сицилийцем Виццини). Уэстли предлагает Виццини сыграть в игру: Уэстли отравит вино в одном из бокалов так, чтобы Виццини не видел, в каком именно. Затем Виццини должен выбрать один из бокалов и выпить вино из него, а Уэстли выпьет из другого бокала. Виццини заявляет, что он гораздо умнее Уэстли: «Ты слышал что-нибудь о Сократе, Платоне, Аристотеле? <…> Дуралей». Он убежден в том, что может выиграть, воспользовавшись логическими рассуждениями:Все, что мне нужно сделать, – это угадать, опираясь на то, что я знаю о тебе: ты человек, который положит яд в свой бокал или в бокал своего врага? Умный человек положит яд в свой бокал, потому что он знает, что только полный дурак выберет тот бокал, который предназначен для него. А я не полный дурак и не могу выбрать бокал, стоящий перед тобой. Но ты, наверное, знал, что я не полный дурак, и рассчитывал на это, поэтому я не могу выбрать вино, стоящее передо мной.
Виццини рассуждает дальше, придерживаясь той же логики. В конце концов он отвлекает внимание Уэстли, меняет кубки местами и смеется, уверенный в своей победе, когда они оба пьют вино из своих кубков. Виццини говорит Уэстли: «Ты пал жертвой грубой ошибки. Всем известно, что нельзя ввязываться в земельный спор в Азии; точно так же нельзя спорить с сицилийцем, когда на кону стоит смерть». Виццини все еще смеется, радуясь своей победе, когда внезапно падает замертво.
Почему логические рассуждения Виццини не принесли ему успеха? Каждый из его аргументов содержал внутреннее противоречие. Если Виццини считает, что Уэстли отравит вино в кубке А, он приходит к выводу, что ему следует выбрать кубок Б. Но Уэстли тоже может сделать такой же логический вывод, и в этом случае он подсыплет яд в кубок Б. Но Виццини должен предвидеть это, а значит, ему следует выбрать кубок А. Но… этому циклу логических рассуждений нет конца{77}
.