Другие наоборот, противопоставляют идеи Канта идеям Лобачевского. Так Роберто Бонола в «Неэвклидовой геометрии» говорит, что воззрение Лобачевского на пространство противоположно кантовскому. Он говорит:
Учение Канта рассматривает пространство как некоторую форму субъективного созерцания, необходимо предшествующую всякому опыту; учение Лобачевского, примыкающее скорее к сенсуализму и обычному эмпиризму, возвращает геометрию в область опытных наук.[4]
Какой же взгляд правилен, и в каком отношении стоят идеи Лобачевского к нашей проблеме? Вернее всего будет сказать: ни в каком отношении. Неэвклидова геометрия не есть метагеометрия, и неэвклидова геометрия стоит к метагеометрии в таком же отношении, как эвклидова геометрия.
Результаты всей неэвклидовой геометрии, подвергшей переоценке основные аксиомы Эвклида и нашедшей своё наиболее полное выражение в работах Больяйя, Гаусса и Лобачевского, выражается в формуле: «Аксиомы данной геометрии выражают свойства данного пространства
Так геометрия на плоскости принимает все три аксиомы Эвклида, то есть:
1) прямая линия есть кратчайшее расстояние между двумя точками;
2) каждую фигуру можно переносить на другое место, не нарушая её свойств;
3) параллельные линии не встречаются (эта последняя аксиома обыкновенно выражается по Эвклиду иначе).
В геометрии на сфере или на вогнутой поверхности верны только две первые аксиомы, так как меридианы, параллельные у экватора, у полюсов уже встречаются.
В геометрии на поверхности с неправильной кривизной верна только первая аксиома, вторая — о переносе фигур, уже невозможна, так как фигура, взятая в одном месте неправильной поверхности, может измениться при переносе на другое место. И сумма углов треугольника может быть и больше, и меньше двух прямых [углов, т. е. 180°].
Таким образом аксиомы выражают различие свойств различного рода поверхностей. Геометрическая аксиома есть закон данной поверхности.
Но что такое поверхность?
Заслуга Лобачевского в том, что он находил необходимым пересмотреть основные понятия геометрии. Но он никогда не шёл так далеко, чтобы переоценить эти понятия с точки зрения Канта. В то же время он ни в каком смысле не возражал против Канта. Поверхность в уме Лобачевского как геометра была только средством обобщения некоторых свойств, в которых строилась та или другая геометрическая система, или обобщением свойств данных линий. О реальности или нереальности поверхности он, вероятно, совсем не думал.
Таким образом с одной стороны, совершенно не прав Бонола, который приписывает Лобачевскому воззрения, противоположные кантовским, и близость к «сенсуализму» и «обычному эмпиризму», а с другой стороны, можно думать, что Хинтон совершенно субъективно приписывает Гауссу и Лобачевскому, что они открыли новую эру в философии.
Неэвклидова геометрия, в том числе и геометрия Лобачевского, не имеет никакого отношения к метагеометрии.
Лобачевский не выходит из сферы трёх измерений.
Метагеометрия рассматривает сферу трёх измерений как разрез высшего пространства. Из математиков ближе всех к этой идее стоял Риман, понимавший отношение времени к пространству.
Точка трёхмерного пространства есть разрез метагеометрической линии. Линии, которые рассматривает метагеометрия, нельзя обобщить ни в какой поверхности. Это последнее, может быть, самое важное для определения различия геометрии (эвклидовой и неэвклидовой) и метагеометрии. Метагеометрические линии нельзя рассматривать как расстояние между точками в нашем пространстве. И нельзя представить себе образующими какие-либо фигуры в нашем пространстве.
Рассмотрение возможных свойств линий, лежащих вне нашего пространства, их углов и отношений этих линий и углов к линиям, углам, поверхностям и телам нашей геометрии и составляет предмет метагеометрии.
Исследователи неэвклидовой геометрии не могли решиться отойти от поверхности. В этом есть что-то прямо трагическое. Посмотрите, какие поверхности придумывал Лобачевский при своих исследованиях 11-го постулата Эвклида (о параллельных линиях, или об углах, образуемых линией, пересекающей две параллельные) — одна из его поверхностей похожа на поверхность лопастей вентилятора[5]
, другая на поверхность воронки. Но отойти от поверхности совсем, бросить её раз и навсегда, представить себе, что линия может быть не на поверхности, то есть что ряд линий параллельных или близких к параллельным не может быть обобщён ни на какой поверхности и даже вообще в трёхмерном пространстве — он не мог решиться. И поэтому — и он и очень многие другие геометры, создавая неэвклидову геометрию, не могли выйти из трёхмерного мира.