Читаем Том 12. Числа-основа гармонии. Музыка и математика полностью

НЕТ — ТРИДЕКАФОНИИ!

Может показаться забавным, что Шёнберг, создатель додекафонии, системы из 12 звуков, страдал оттрискаидекафобии — боязни числа 13. Причины этой фобии неизвестны. По-видимому, она появилась еще в древние времена, так как еще викинги избегали «чертовой дюжины», а в христианской традиции это число связывается с Иудой, который был тринадцатым на Тайной вечере. В древней Персии это число ассоциировалось с хаосом.

Боязнь числа 13 порой достигает невероятных размеров. Так, во многих городах, где улицы пронумерованы, нет улицы под номером 13; во многих зданиях нет 13-го этажа. В «Формуле-1» ни один автомобиль не имеет номер 13. Американского актера Стэна Лорела из знаменитого дуэта Лорела и Харди на самом деле звали Стэн Джеферсон (13 букв); он сменил фамилию из-за боязни числа 13. Некоторые музыканты также демонстрировали по меньшей мере предубеждение к этому числу: американец Джон Мэйер записал 14 композиций для своего альбома Room for Squares, но композиция под номером 13 содержит лишь две секунды тишины, а в нумерации композиций на этом альбоме число 13 пропускается.

Арнольд Шёнберг родился 13 сентября 1874 года. Он изменил название своей оперы Moses und Aaron («Моисей и Аарон») на Moses und Aron, так как первый вариант названия содержал 13 букв. Он боялся умереть в год, кратный числу 13, и в 1950 году, когда ему исполнилось 76 лет (7 + 6 = 13), он впал в депрессию. Он умер в пятницу 13 июля 1951 года. В свою очередь Альбан Берг был одержим числом 23, которое считал фатальным. Тем не менее это число часто используется в его Лирической сюите: многие ее части имеют число тактов, кратное 23, равно как и темп метронома.

* * *

Серии

Чтобы достичь этой цели, в додекафонии используется ряд правил. Например, чтобы слушатель не заострял внимание на определенных нотах больше, чем на остальных, композиции должны содержать полные циклы из всех 12 нот. После того как была использована одна нота, ее можно использовать снова только тогда, когда будет завершен цикл из 12 нот.

Ноты циклов не располагаются в беспорядке — напротив, в основе каждой композиции лежит «серия» — четко упорядоченная последовательность из 12 звуков хроматической гаммы.

Однако серия — это не просто группировка звуков с целью их статистического подсчета, а эквивалент традиционного мотива. В этом смысле додекафония признает себя продолжателем западной музыкальной традиции. Изображенная ниже серия используется в Сюите ор. 25 Шёнберга — одном из первых произведений, в котором применена система из 12 звуков.

Композитор наряду с основной серией создает другие, связанные или производные серии. Они получаются с помощью преобразований, которые мы рассмотрели в главе 3: инверсии, ракохода и транспозиции.

Существует четвертое преобразование, популярное у некоторых композиторов, — поворот. Если мы представим серию в виде круга (соединив первую ноту с последней), поворот будет эквивалентен началу серии с любой из точек круга.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги