Читаем Том 12. Числа-основа гармонии. Музыка и математика полностью

Может показаться, что додекафоническая запись не требует особого творчества, потому что в ней используются серии. Да, применение серий составляет саму суть додекафонии, но каждый композитор подстраивает их к своим потребностям. На основе серии композитор может использовать разнообразные приемы: запись нот серии в разных октавах и для разных инструментов; начало исходной или преобразованной серии до того, как закончено исполнение предыдущей; работа с производными сериями, составленными из фрагментов исходной, и так далее.

* * *

КАКОВО ЧИСЛО ВСЕХ ВОЗМОЖНЫХ СЕРИЙ?

Первой нотой серии может быть любая из 12 возможных. После того как мы выбрали первую ноту, следующую можно выбрать из 11 оставшихся. Таким образом, число возможных вариантов для первых двух нот равно 12·11. Третьей нотой может быть любая из десяти оставшихся. Таким образом, число вариантов для первых трех нот равняется 12·11·10. Продолжив рассуждения, получим, что общее число возможных различных серий равно 12·11·10·9·…·3·2·1 = 479001600. Это число называется факториал 12 и записывается как 12!

Факториал любого целого положительного числа п определяется как произведение всех целых положительных чисел от 1 до n. Таким образом, n! = n·(n — 1)·…·2·1.

Однако для додекафонических серий подсчет «различных по сути» мелодий выглядит несколько сложнее, так как в этом случае не должны учитываться транспозиции, инверсии, ракоходы и сочетания этих преобразований. Тщательные подсчеты показывают, что число различных серий равно 9 985 920.

* * *

Числовая и матричная форма

Традиционные партитуры, в которых используется нотный стан, подчиняются логике диатонической музыки. Одним из следствий этого является тот факт, что расстояние между соседними линиями нотного стана и промежутками между ними не всегда обозначает один и тот же музыкальный интервал. Иногда этот интервал состоит из двух полутонов (от ре до ми), иногда — из одного (от ми до фа). Из-за этого в додекафонической музыке используются альтерации. По этой причине, как видно из предыдущих примеров, инверсии и ракоходы додекафонических серий «не видны» на партитурах.

Серию также можно представить в числовом виде, что упрощает запись мелодии. При записи серий в числовом виде, как правило, выбирается исходная нота. В следующем примере исходной нотой является ми, которой присвоено значение 0. Далее последовательно нумеруются полутона: фа обозначается 1, фа диез — 2, соль — 3 и так далее.

При представлении серии в числовом виде для нахождения связанных серий можно использовать средства арифметики. Например, транспозиция серии получается прибавлением одного и того же числа k к каждому элементу серии:

Tk(s1, s2, …, s12) —> (s1 + k, s2 + k, …, s12 + k),

T0(0, 1, 3, 9, 2, 11, 4, 10, 7, 8, 5, 6) —> (0, 1, 3, 9, 2, 11, 4, 10, 7, 8, 5, 6),

T1(0, 1, 3, 9, 2, 11, 4, 10, 7, 8, 5, 6) —> (1, 2, 4, 10, 3, 0, 3, 11, 8, 9, 6, 7),

T2(0, 1, 3, 9, 2, 11, 4, 10, 7, 8, 5, 6) —> (2, 3, 5, 11, 4, 1, 6, 0, 9, 10, 7, 8),

T7(0, 1, 3, 9, 2, 11, 4, 10, 7, 8, 5, 6) —> (7, 8, 10, 4, 9, 6, 11, 3, 2, 3, 0,1),

T12(0, 1, 3, 9, 2, 11, 4, 10, 7, 8, 5, 6) —> (11, 0, 2, 8, 1, 10, 3, 9, 6, 7, 4, 5).

После 11 счет снова начинается с 0, точно так же как мы считаем часы: 8 часов утра плюс 7 часов равно 3 часам дня. В математике подобные операции на ограниченных множествах чисел называются модулярной арифметикой. В случае с додекафоническими сериями множество чисел имеет всего 12 элементов в интервале от 0 до 11. Число элементов множества называется модулем (в нашем случае модуль равен 12). В арифметике по модулю 12 число 13 эквивалентно числу 1. Записывается это так:

13  1 (mod 12).

Все числа вида 12+ 1, где k — целое, эквивалентны 1:

25  1 (mod 12),

37  1 (mod 12),

49  1 (mod 12),

61  1 (mod 12),

Как мы уже говорили, в додекафонии не проводятся различия между одинаковыми нотами, которые относятся к разным октавам. Арифметика по модулю 12 отражает этот факт: число 1, которым в нашем примере обозначена нота фа, равно 13, которым снова обозначается фа.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги