Левая часть не зависит от того, как выбирать интервалы — лишь бы точки (1) и (2) были теми же самыми, так что справа можно перейти к пределу. Так доказывается уравнение (3.1). Из нашего доказательства видно, что, подобно тому как равенство не зависит и от выбора точек а,
Два слова об обозначениях. Не будет путаницы, если писать для удобства
Тогда наша теорема примет такой вид:
§ 2. Поток векторного поля
Прежде чем рассматривать следующую интегральную теорему — теорему о дивергенции,— хотелось бы разобраться в одной идее, смысл которой в случае теплового потока легко усваивается. Мы уже определили вектор h
, представляющий количество тепла, протекающего сквозь единицу площади в единицу времени. Положим, что внутри тела имеется замкнутая поверхностьОбозначим через
Позже мы будем иметь дело с интегралами по объему, и тогда будет удобно рассматривать элемент объема в виде малого кубика и обозначать его
Кое-кто пишет и
Поток тепла через элемент поверхности
Искомая составляющая h
равнаи тогда поток тепла сквозь
А весь поток тепла через произвольную поверхность получается суммированием вкладов от всех элементов поверхности. Иными словами, (3.10) интегрируется по всей поверхности
Этот интеграл мы будем называть «поток h
через поверхность». Мы рассматриваем h как «плотность потока» тепла, а поверхностный интеграл от h — это общий поток тепла наружу через поверхность, т. е. тепловая энергия за единицу времени (джоули в секунду).Мы хотим эту идею обобщить на случай, когда вектор не представляет собой потока какой-то величины, а, скажем, является электрическим полем. Конечно, если это будет нужно, то и в этом случае все равно можно проинтегрировать нормальную составляющую электрического поля по площади. Хотя теперь она уже не будет ничьим потоком, мы все еще будем употреблять слово «поток». Мы будем говорить, что
Слову «поток» мы придаем смысл «поверхностного интеграла от нормальной составляющей» некоторого вектора. То же определение будет применяться и тогда, когда поверхность незамкнута.
А возвращаясь к частному случаю потока тепла, обратим внимание на те случаи, когда
где