Читаем Том 2. Электромагнетизм и материя полностью

<p><strong>§ 4. Теплопроводность; уравнение диффузии</strong></span><span></p>

Чтобы привыкнуть к теореме, разберем на примере, как ее применяют. Обратимся опять к распространению тепла, скажем в металле. Рассмотрим совсем простой случай: все тепло было подведено к телу заранее, а теперь тело остывает. Источников тепла нет, так что количество тепла сохраняется. Сколько же тогда тепла должно оказаться внутри некоего определенного объема в какой-то момент времени? Оно должно уменьшаться как раз на то количество, которое уходит с поверхности объема. Если этот объем — маленький кубик, то, следуя формуле (3.17), можно написать

(3.19)

Но это должно быть равно скорости потери тепла внутренностью куба. Если q — количество тепла в единице объема, то весь запас тепла в кубе qΔV, а скорость потерь равна

(3.20)

Сравнивая (3.19) с (3.20), мы видим, что

(3.21)

Внимательно вглядитесь в форму этого уравнения; эта форма часто встречается в физике. Она выражает закон сохранения, в данном случае закон сохранения тепла. В уравнении (3.13) тот же физический факт был выражен иначе. Там была интегральная форма уравнения сохранения, а здесь у нас — дифференциальная форма.

Уравнение (3.21) мы получили, применив формулу (3.13) к бесконечно малому кубу. Можно пойти и по другому пути. Для большого объема V, ограниченного поверхностью S, закон Гаусса утверждает, что

(3.22)

Интеграл в правой части можно, используя (3.21), преобразовать как раз к виду -dQ/dt, и тогда получится формула (3.13).

Теперь рассмотрим другой случай. Представим, что в блоке вещества имеется маленькая дырочка, а в ней идет химическая реакция, генерирующая тепло. Можно еще представить себе, что к маленькому сопротивлению внутри блока подведены проволочки, нагревающие его электрическим током. Предположим, что тепло создается практически в одной точке, а W представляет собой энергию, возникающую в этой точке за секунду. В остальной же части объема пусть тепло сохраняется и, кроме того, пусть генерация тепла началась так давно, что сейчас температура уже нигде больше не изменяется. Вопрос состоит в следующем: как выглядит вектор потока тепла h в разных точках металла? Сколько тепла перетекает через каждую точку?

Мы знаем, что если мы будем интегрировать нормальную составляющую h по замкнутой поверхности, окружающей источник, то всегда получится W. Все тепло, которое генерируется в точечном источнике, должно протечь через поверхность, ибо предполагается, что поток постоянен. Перед нами трудная задача отыскания такого векторного поля, которое после интегрирования по произвольной поверхности всегда давало бы W. Но мы сравнительно легко можем найти это поле, выбрав поверхность специального вида. Возьмем сферу радиусом R с центром в источнике и предположим, что поток тепла радиален (фиг. 3.6).

Фиг. 3.6. В области близ точечного источника поток тепла направлен по радиусу наружу.

Интуиция нам подсказывает, что h должен быть направлен по радиусу, если блок вещества велик и мы не приближаемся слишком близко к его границам; кроме того, величина h во всех точках сферы должна быть одинакова. Вы видите, что для получения ответа к нашим выкладкам мы вынуждены добавить известное количество домыслов (обычно это именуют «физической интуицией»).

Когда h радиально и сферически симметрично, интеграл от нормальной компоненты h по площади поверхности вычисляется очень просто, потому что нормальная компонента в точности равна h и постоянна. Площадь, по которой интегрируется, равна 4πR2. Тогда мы получаем

(3.23)

где h — абсолютная величина h. Этот интеграл должен быть равен W — скорости, с которой источник генерирует тепло. Получается

или

(3.24)

где, как всегда, er обозначает единичный вектор в радиальном направлении. Этот результат говорит нам, что h пропорционален W и меняется обратно квадрату расстояния от источника.

Только что полученный результат применим к потоку тепла вблизи точечного источника тепла. Теперь попытаемся найти уравнения, которые справедливы для теплового потока самого общего вида (придерживаясь единственного условия, что количество тепла должно сохраняться). Нас будет интересовать только то, что происходит в местах вне каких-либо источников или поглотителей тепла.

Дифференциальное уравнение распространения тепла было получено в гл. 2. В соответствии с уравнением (2.44),

(3.25)

(Помните, что это соотношение приближенное, но для некоторых веществ вроде металлов выдерживается неплохо.) Применимо оно, конечно, только в тех частях тела, где нет ни выделения, ни поглощения тепла. Выше мы вывели другое соотношение (3.21), которое выполняется тогда, когда количество тепла сохраняется. Если мы это уравнение скомбинируем с (3.25), то получим

или

(3.26)

если ϰ — величина постоянная. Напоминаю, что q — это количество тепла в единичном объеме, а ·=∇2 — лапласиан, т. е. оператор

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука