Теперь предположим, что первоначальный контур — это граница некоторой поверхности. Существует бесконечное множество поверхностей, границей которых служит все тот же первоначальный замкнутый контур. Наши результаты не зависят, однако, от выбора этих поверхностей. Сперва мы разобьем наш первоначальный контур на множество малых контуров, лежащих на выбранной поверхности (фиг. 3.9).
Какой бы ни была форма поверхности, но если малые контуры сделать достаточно малыми, всегда можно будет считать каждый из них замыкающим достаточно плоскую поверхность. Кроме того, каждый из них можно сделать очень похожим на квадрат. И циркуляцию вокруг большого контура Γ можно найти, подсчитав циркуляции по всем квадратикам и сложив их.
§ 6. Циркуляция по квадрату; теорема Стокса
Как нам найти циркуляцию по каждому квадратику? Все зависит от того, как квадрат ориентирован в пространстве. Если ориентация его подобрана удачно (к примеру, он расположен в одной из координатных плоскостей), то расчет сделать легко. Так как пока мы не делали никаких предположений об ориентации осей координат, мы вправе выбрать их так, чтобы тот квадратик, на котором мы сосредоточили свое внимание, оказался в плоскости
Если результат расчета будет выражен в векторной записи, то можно говорить, что он не зависит от специальной ориентации плоскости.
Мы хотим теперь найти циркуляцию поля С
по нашему квадратику. Криволинейное интегрирование легко проделать, если квадратик сделать таким маленьким, чтобы вектор С на протяжении одной стороны квадрата менялся очень мало. (Это предположение выполняется тем лучше, чем меньше квадратик, так что на самом деле речь идет о бесконечно малых квадратиках.) Отправившись от точки (Посмотрим теперь на первый и третий члены. В сумме они дают
Вам может показаться, что в принятом приближении эта разность равна нулю. Но это только в первом приближении. Мы можем быть более точными и учесть скорость изменения
В следующем приближении пойдут члены с (Δy)2
, но ввиду того, что нас интересует в конечном счете только предел при Δy→0, то этими членами можно пренебречь. Подставляя (3.33) в (3.32), мы получаемПроизводную при нашей точности можно брать в точке (
и циркуляция по квадрату тогда равна
Интересно, что в скобках получилась как раз z-компонента ротора
Но z-компонента это на самом деле компонента,
В результате имеем: циркуляция произвольного вектора С
по бесконечно малому квадрату равна произведению составляющей ротора С, нормальной к поверхности, на площадь квадрата.Циркуляция по произвольному контуру Γ легко теперь может быть увязана с ротором векторного поля. Натянем на контур любую подходящую поверхность
Сумма может быть записана в виде интеграла. В итоге получится очень полезная теорема, называемая теоремой Стокса [по имени физика Стокса].