Тот же результат был выведен с помощью векторной алгебры в гл. 2, § 7. Теперь мы начинаем понимать, как все здесь прилажено одно к другому.
§ 8.
Подытожим теперь все, что мы узнали о векторном исчислении. Вот самые существенные моменты гл. 2 и 3.
1. Операторы ∂/∂
2. Разность значений скалярного поля в двух точках равна криволинейному интегралу от касательной составляющей градиента этого скаляра вдоль любой кривой, соединяющей первую точку со второй:
3. Поверхностный интеграл от нормальной составляющей произвольного вектора по замкнутой поверхности равен интегралу от дивергенции вектора по объему, лежащему внутри этой поверхности:
4. Криволинейный интеграл от касательной составляющей произвольного вектора по замкнутому контуру равен поверхностному интегралу от нормальной составляющей ротора этого вектора по произвольной поверхности, ограниченной этим контуром
Начиная изучать уравнения Максвелла, обратите внимание, что в этих лекциях используется рационализированная система единиц, в которой уравнения Максвелла не содержат коэффициентов.
Более привычно вместо ε0
писать ε0/4π; тогда коэффициент 4π исчезает из знаменателя закона Кулона (4.9), но появляется в правых частях уравнений (4.1) и (4.3). [Улучшение системы единиц всегда похоже на Тришкин кафтан.]Кроме того, вместо квадрата скорости света вводят новую постоянную μ0
=ε0/c2, называют ее (довольно неудачно) магнитной проницаемостью пустоты (так же, как ε0 называют диэлектрической проницаемостью пустоты) и обозначают ε0E=D, B=μ0H.Будьте осторожны! Проверяйте систему единиц, когда открываете новую книгу об электричестве!
Глава 4 ЭЛЕКТРОСТАТИКА
§ 1. Статика
Начнем теперь подробное изучение теории электромагнетизма. Она вся (весь электромагнетизм целиком) запрятана в
Явления, описываемые этими уравнениями, могут быть очень сложными. Но прежде чем перейти к более сложным, мы начнем со сравнительно простых и сначала научимся обращаться с ними. Самым легким для изучения является случай, который называют
Обратите внимание на интересное свойство этой системы четырех уравнений. Она распалась на две части. Электрическое поле Е
появляется только в первой паре уравнений, а магнитное поле В — только во второй. Между собой эти два поля совсем не связаны. Это означает, чтоЕсли вы всмотритесь в уравнения статики, то обнаружите, что для изучения математических свойств векторных полей эти два предмета — электростатика и магнитостатика — являются идеальным объектом. Электростатика — это чистый пример векторного поля с