С тех пор как в XVI веке Коперником была провозглашена гелиоцентрическая система и особенно после того, как благодаря трудам Галилея, Кеплера и Ньютона ее справедливость была доказана, многие относились к Птолемею пренебрежительно, рассматривая созданную им геоцентрическую систему как нелепость, веками использовавшуюся богословами для подтверждения библейской картины мира. Однако сам Коперник с большим почтением и уважением относился к Птолемею, подчеркивая, что и Птолемей и он метили в одну цель, но степень точности прицела была различной.
Великая историческая заслуга Птолемея заключалась в том, что он впервые в истории астрономии да, пожалуй, и науки вообще попытался создать единую систему знаний, относящуюся к единой области — движению небесных светил. Птолемей стремился объединить в рамках единой системы механические основы движения светил, заимствованные у Аристотеля, эмпирические наблюдения, производившиеся его многочисленными предшественниками в Греции и в странах древней Азии, а также достижения современной ему математики. Что еще важнее, он попытался подойти к рассматриваемым явлениям с единой математической точки зрения и создать для каждого движущегося небесного светила — Солнца и известных ему планет — геометрическую модель движения. Правда, его система страдала рядом серьезных недостатков, справедливо подмеченных как арабскими астрономами, так и особенно Коперником, который отмечал слабость математических основ системы Птолемея. Тем не менее первая историческая попытка изложить астрономию на математической основе, позволяющей хотя бы приблизительно вычислять и предсказывать движение светил, произвела столь сильное впечатление на современников и последователей Птолемея, что, несмотря на множество недостатков и несоответствия более точным наблюдениям, система эта просуществовала без изменения почти тринадцать столетий.
Интересно отметить, что не только несоответствие ряда вычислений, произведенных на основе невероятно сложных геометрических построений Птолемея, с действительными наблюдениями, но в гораздо большей степени общая математическая шаткость основ системы Птолемея побудили Коперника, по его собственным словам, заняться пересмотром системы Птолемея в целом.
Величайшей заслугой Коперника было понимание того, что научное знание должно излагаться и развиваться в рамках единой математической системы. Коперник правильно считал, что основа, то есть исходные положения, отнюдь не обязательно должны покоиться на наблюдении. Достаточно, чтобы они были просты, не противоречивы и позволяли путем логического вывода или математических преобразований получить следствия, которые, по мнению Коперника, должны непременно согласовываться с наблюдением и экспериментом. В противном случае вся математическая система рассматривалась как несоответствующая данной совокупности естественно-научных знаний, не способная служить их развитию и изложению.
Этим подход Коперника существенно отличался от подхода Птолемея, стремившегося в первую очередь согласовать свои геометрические модели движения планет и Солнца с наблюдением, но мало заботившегося как о простоте и согласованности между собой различных моделей, так и о соответствии их точным расчетам, опирающимся на наблюдения. Переворот в научном мышлении, произведенный Коперником, оказал могучее влияние на развитие всего естествознания Нового времени.
Дальнейшие успехи в применении математики для целей научного познания связаны с именами прежде всего Галилея, Кеплера, Гюйгенса и Ньютона. Из этого, конечно, неверно было бы делать вывод, что только эти четыре великих мыслителя содействовали применению математики к решению научных проблем.
Период XVI и XVII веков дал миру многих выдающихся ученых, стремившихся применить математику для решения различных научных задач, но именно эти мыслители сделали существенные шаги, видоизменившие взаимоотношения математики и экспериментального естествознания. Со времен античных ученых и особенно Птолемея вплоть до Коперника математика играла роль вспомогательного средства. Ее использовали для упорядочения результатов наблюдения, для проведения вычислений в тех случаях, когда прямые наблюдения или измерения казались невозможными, наконец, для вычисления отдельных количественных характеристик тех или иных явлений. Но при этом математика как бы накладывалась на эмпирические знания, само же развитие математики происходило независимо от естествознания и никак не связывалось со стоящими перед ним задачами.
В период средних веков, в эпоху засилья церковной схоластики, успехи опытного эмпирического естествознания были практически ничтожны, и математика развивалась независимо от него, в силу своих внутренних потребностей и закономерностей. Галилей одним из первых стал использовать математические соображения при проведении и планировании экспериментов.