Читаем Трактат об электричестве и магнетизме полностью

Так, например, если принять действительное вращение Земли с запада на восток за положительное, то и направление земной оси с юга на север также будет взято за положительное; и если человек идёт вперёд в положительном направлении, то положительное вращение происходит в таком порядке: голова, правая рука, ноги, левая рука.

Если мы поместим себя на положительную сторону некоторой поверхности, то положительное направление вдоль ограничивающей эту поверхность кривой окажется противоположным движению стрелок часов, циферблат которых обращён к нам.

Это и есть та самая правая (правосторонняя) система отсчёта, которая принята Томсоном и Тэтом в их книге «Натуральная философия» (Natural Philosophy), а также в книге Тэта «Кватернионы» (Quaternions). Противоположная ей левая (левосторонняя) система отсчёта принята в гамильтоновых «Кватернионах» (Lectures, р. 76, and Elements, р. 108, and р. 117 note). Операция перехода от одной системы к другой названа Листингом Перверсией - обращением, зеркальным отражением.

Отражение какого-либо предмета в зеркале является его обращённым изображением.

Используя Декартовы оси координат x, y, z, мы будем изображать их так, чтобы общепринятая договорённость о циклическом порядке расположения символов приводила к правой системе отсчёта направлений в пространстве. Так, если ось x проведена смотрящей на восток, а ось y - на север, то ось z должна быть проведена вертикально вверх.

Площади поверхностей будут браться с положительным знаком в том случае, когда порядок интегрирования совпадает с циклическим порядком расстановки символов. Так, площадь на плоскости xy расположенная внутри некоторой замкнутой кривой, может быть записана либо xdy либо - ydx; в первом выражении порядок интегрирования есть x, y во втором - y, x.

Это соотношение между двумя произведениями dx dy и dy dx можно сравнить с правилом умножения двух перпендикулярных векторов в теории кватернионов, где знак произведения определяется порядком умножения; его можно сравнить также с изменением знака детерминанта, происходящим при перестановке местами соседних строчек или столбцов.

По таким же причинам объёмный интеграл должен считаться положительным, когда порядок интегрирования совпадает с циклической расстановкой переменных x, y, z и отрицательным при обращённом порядке цикличности.

Перейдём теперь к доказательству теоремы, полезной для установления связи между поверхностным интегралом, взятым по некоторой конечной поверхности, и линейным интегралом, взятым вдоль её границы.

24.Теорема IV.Линейный интеграл, взятый вдоль замкнутой кривой, может быть выражен через поверхностный интеграл, взятый по поверхности, ограниченной этой кривой.

Пусть X, Y, Z будут составляющие той векторной величины A, линейный интеграл от которой должен быть взят по замкнутой кривой s.

Пусть произвольная непрерывная поверхность S целиком ограничена замкнутой кривой s, а составляющие , , другой векторной величины B связаны с составляющими X, Y, Z уравнениями


=

dZ

dy

-

dY

dz

,

=

dX

dz

-

dZ

dx

,

=

dY

dx

-

dX

dy

.


(1)


Тогда поверхностный интеграл от B, взятый по поверхности S, равен линейному интегралу от A, взятому вдоль кривой s. Очевидно, что сами составляющие X, Y, Z удовлетворяют условию соленоидальности.

Пусть l, m, n будут направляющими косинусами нормали к элементу поверхности dS, отсчитываемой в положительном направлении. Тогда величина поверхностного интеграла от B может быть записана так:


(

l

+

m

+

n

)

dS

.


(2)


Для того чтобы придать элементу dS определённый смысл, предположим, что в каждой точке поверхности значения координат x, y, z заданы как функции двух независимых переменных и . Если постоянна, а изменяется, точка (x, y, z) будет описывать некоторую кривую на поверхности, и если перебрать целый ряд значений , то будет прочерчена серия таких кривых, полностью лежащих на поверхности S. Подобным же образом, перебирая последовательность постоянных , можно нанести вторую серию кривых, пересекающихся с кривыми первой серии и разделяющих всю поверхность на элементарные участки, любой из которых может быть взят за элемент dS.

Проекция этого элемента на плоскость yz согласно обычным формулам, равна


ldS

=


dy

d


dz

d

-

dy

d


dz

d


d

d

.


(3)


Выражения для mdS и ndS получаются отсюда путём перестановки x, y, z в циклическом порядке.

Поверхностный интеграл, который мы должны найти, есть


(

l

+

m

+

n

)

dS

,


(4)


или, выражая , , через X, Y, Z


m

dX

dz

-n

dX

dy

+n

dY

dx

-l

dY

dz

+l

dZ

dy

-m

dZ

dx


dS

.


(5)


Часть этого интеграла, зависящая от X, может быть записана так:



dX

dz



dz

d


dx

d

-

dz

d


dx

d


-

dX

dy



dx

d


dy

d

-

dx

d


dy

d



d

d

.


(6)


После добавления и вычитания величины


dX

dx


dx

d


dx

d


это выражение становится таким:



dx

d



dX

dx


dx

d

+

dX

dy


dy

d

+

dX

dz


dz

d


-


-

dx

d



dX

dx


dx

d

+

dX

dy


dy

d

+

dX

dz


dz

d



d

d

;


(7)


=


dX

d


dx

d

-

dX

d


dx

d


d

d

.


(8)


Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже